###
计算机系统应用英文版:2022,31(3):30-37
本文二维码信息
码上扫一扫!
基于改进原型网络的P300脑电信号检测
(1.华南理工大学 自动化科学与工程学院 脑机接口与脑信息处理研究中心, 广州 510640;2.华南师范大学 软件学院, 佛山 528225)
Improved Prototype Network for P300 Signal Detection
(1.Center for Brain Computer Interfaces and Brain Information Processing, School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China;2.School of Software, South China Normal University, Foshan 528225, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 856次   下载 19536
Received:May 17, 2021    Revised:June 14, 2021
中文摘要: 从脑电信号中检测P300电位是实现P300脑机接口的关键. 由于不同个体间的脑电信号存在较大差异, 现有的基于深度学习的P300检测方法均需要大量的脑电数据来训练模型. 对于小样本的患者数据, 至今仍没有令人满意的解决方案. 本文提出了一种改进的适用于小样本P300脑电信号检测的原型网络方法. 该模型通过卷积神经网络提取特征, 结合度量方法余弦相似度, 实现P300脑电信号的分类和识别. 在第三届国际脑机接口竞赛的数据集II上进行测试和比较, 取得了平均字符识别率达95%的良好识别性能. 进一步地, 我们把该方法应用于小样本的意识障碍患者意识状态检测中. 在基于命令遵循的意识状态检测实验中, 5位正常人的准确率均为100%, 10位意识障碍患者的意识状态检测结果与临床评估结果相匹配. 研究证明该模型对改进应用于小样本的P300脑机接口系统具有重要意义.
中文关键词: 脑机接口  原型网络  脑电图  P300  意识障碍
Abstract:Detecting P300 signals from electroencephalograms (EEGs) is the key to the realization of P300 brain-computer interface (BCI) systems. Because EEG signals vary greatly among different individuals, the existing P300 detection methods based on deep learning require plenty of EEG data to train the model, and there is still no satisfactory solution for learning from limited data of patients. In this study, we proposed an improved prototype network for P300 signal detection of samples with a small size, which extracts features with a convolutional neural network (CNN) and utilizes the cosine similarity of the measurement method to classify and recognize P300 signals. This method achieves a good recognition performance with an average character recognition rate of 95% on the data set II of the third BCI competition. Furthermore, we applied this method to diagnose the consciousness of a small number of patients with disorders of consciousness (DOC). Ten patients with DOC and five healthy subjects participated in a command-following experiment. All healthy subjects achieved significant accuracy (100%) and the results of consciousness diagnosis of the DOC patients were consistent with clinical evaluation. Our findings suggest that the model is of great significance to the improvement of P300 BCI systems for limited data.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省重点研发计划(2018B030339001); 国家自然科学基金面上项目(62076103); 广州市重点领域研发计划(202007030005); 广东省自然科学基金面上项目(2019A1515011375)
引用文本:
施翔宇,潘家辉.基于改进原型网络的P300脑电信号检测.计算机系统应用,2022,31(3):30-37
SHI Xiang-Yu,PAN Jia-Hui.Improved Prototype Network for P300 Signal Detection.COMPUTER SYSTEMS APPLICATIONS,2022,31(3):30-37