###
计算机系统应用英文版:2022,31(6):300-306
本文二维码信息
码上扫一扫!
改进YOLOv4的油田作业现场烟火检测
(东北石油大学 计算机与信息技术学院, 大庆 163318)
Fire Detection Based on Improved YOLOv4 in Oil Field
(School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 693次   下载 1198
Received:May 08, 2021    Revised:June 08, 2021
中文摘要: 为解决油田作业现场烟火预警依赖人工巡检、不能及时发现等问题, 本文提出了改进的YOLOv4烟火检测算法. 具体针对摄像头距离远导致的烟火目标小、不易被识别的问题, 改进了网络特征融合部分, 并添加金字塔卷积PyConv, 增强细节提取能力、增大局部感受野. 针对油田作业现场的复杂背景干扰问题, 加入注意力机制, 用于加强网络对重要特征的权重计算, 同时减少非关键数据的计算量. 最后通过聚类算法对目标样本锚定框优化, 利用自建烟火数据集进行实验, 实验结果证明, 改进后的算法模型具有相当高的性能, MAP达到90%以上, 能够在复杂背景下对较小烟火目标保持较高的识别率, 说明改进后的算法在油田作业现场烟火识别中具有较高实用价值.
Abstract:Considering that fire warning in oilfield operation sites depends on manual inspection and cannot be realized in time, this study proposes an improved YOLOv4 fire detection algorithm. Specifically, due to the long distance between the camera and the fire target, fires are too small to be identified. Given this problem, the network feature fusion is improved and the pyramid convolution (PyConv) is added to enhance the detail extraction ability and increase the local receptive field. In response to the complex background interference in the oilfield operation sites, the attention mechanism is adopted to strengthen the network’s ability in weight calculation of important features, reducing non-critical data calculation. Finally, the anchor boxes of target samples are optimized through a clustering algorithm, and the self-built fire dataset is used for experiments. The experimental results prove that the improved algorithm model has quite good performance, has a mean average precision (mAP) of more than 90%, and can maintain a high recognition rate for small pyrotechnic targets in complex background. It shows that the improved algorithm has high practical value in pyrotechnic recognition in oil field operation site.
文章编号:     中图分类号:    文献标志码:
基金项目:黑龙江省自然科学基金(LH2021F004); 黑龙江省高等学校教改工程(SJGZ20200037); 东北石油大学研究生教育创新工程(JYCX_11_2020); 黑龙江省省属本科高校基本科研业务费(KYCXTD201903); 东北石油大学引导性创新基金(2020YDL-11); 黑龙江省优秀青年科学基金(YQ2020D001); 黑龙江省教育科学规划重点课题(GJB1421113)
引用文本:
田枫,冯建臣,刘芳.改进YOLOv4的油田作业现场烟火检测.计算机系统应用,2022,31(6):300-306
TIAN Feng,FENG Jian-Chen,LIU Fang.Fire Detection Based on Improved YOLOv4 in Oil Field.COMPUTER SYSTEMS APPLICATIONS,2022,31(6):300-306