本文已被:浏览 863次 下载 1791次
Received:April 16, 2021 Revised:June 08, 2021
Received:April 16, 2021 Revised:June 08, 2021
中文摘要: 针对目前基于批量归一化的ResNet肺炎辅助诊断方法对于批量大小具有较高依赖性、网络通道特征利用率较低, 并针对采用深度神经网络的肺炎诊断方法都忽略了医疗数据隐私和孤岛的问题, 提出一种融合联邦学习框架、压缩激励网络和改进ResNet的辅助诊断方法(FL-SE-ResNet-GN), 运用联邦学习保护数据隐私的同时结合压缩激励网络和组归一化方式充分关注通道特征. 通过Chest X-Ray Images数据集的实验结果表明, 该方法的准确率、精度和召回率分别达到0.952、0.933和0.974. 与其它现有方法相比, 该方法在保护数据隐私的基础上准确率和召回率指标具有明显提升.
Abstract:The current assisted pneumonia diagnosis method using the residual network (ResNet) based on batch normalization has high dependence on the batch size and a low utilization rate of network channel features, and pneumonia diagnosis methods using deep neural networks all ignore the problems of medical data privacy and islands. To solve these problems, this study proposes an assisted diagnosis method that integrates the federated learning framework, the squeeze-and-excitation network, and the improved ResNet (FL-SE-ResNet-GN). This method uses FL to protect data privacy and pays full attention to channel characteristics with the SE network and the group normalization method. Experimental results on the Chest X-Ray Images dataset show that the accuracy, precision, and recall of this method reach 0.952, 0.933, and 0.974, respectively. Compared with other existing methods, this method has significantly improved the accuracy and recall indicators on the basis of protecting data privacy.
keywords: assisted diagnosis of pneumonia federated learning residual network (ResNet) privacy protection data island
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
曹润芝,韩斌,刘嘎琼.基于联邦学习和改进ResNet的肺炎辅助诊断.计算机系统应用,2022,31(2):227-233
CAO Run-Zhi,HAN Bin,LIU Ga-Qiong.Assisted Diagnosis of Pneumonia Based on Federated Learning and Improved ResNet.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):227-233
曹润芝,韩斌,刘嘎琼.基于联邦学习和改进ResNet的肺炎辅助诊断.计算机系统应用,2022,31(2):227-233
CAO Run-Zhi,HAN Bin,LIU Ga-Qiong.Assisted Diagnosis of Pneumonia Based on Federated Learning and Improved ResNet.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):227-233