本文已被:浏览 723次 下载 1463次
Received:April 21, 2021 Revised:May 19, 2021
Received:April 21, 2021 Revised:May 19, 2021
中文摘要: 为促进矿业领域向信息化、智能化的方向转变, 实现对石墨的智能识别尤为关键. 针对人工识别石墨花费时间长、效率低等问题, 提出了一种改进的AlexNet网络应用于石墨的图像识别. 首先通过随机裁剪、依概率水平翻转和归一化处理等手段对数据集进行图像预处理达到数据增强的目的; 然后采用激活函数ReLU6压缩动态范围, 使算法更稳健; 运用批标准化算法进行归一化加快收敛速度; 修改卷积核的大小增强泛化能力; 在全连接层加上dropout正则化进一步防止过拟合. 在仿真实验中, 与已有方法进行比较, 所给方法降低了损失值, 提高了石墨的识别平均准确率.
Abstract:The intelligent recognition of graphite is particularly critical to the transformation of the mining industry to informatization and intellectualization. To address the long time and low efficiency in manually identifying graphite, this study proposes an improved AlexNet network for graphite image recognition. First, image preprocessing is performed on the data set through random cropping, horizontal flipping according to probability, and normalization to achieve data augmentation. Then, the activation function ReLU6 is employed to compress the dynamic range so that the algorithm can become more robust. The batch standardization algorithm is used for normalization to speed up the convergence, and the convolution kernel is resized to enhance the generalization ability. Finally, dropout regularization is added to the fully connected layer to further prevent overfitting. Compared with the existing method, the proposed method reduces the loss value and improves the average accuracy of graphite recognition in the simulation experiment.
keywords: graphite recognition convolution neural network (CNN) feature extraction small sample data set
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61773016);陕西省创新能力支撑计划(2020PT-023);陕西省自然科学基础研究计划(2018JQ1089)
引用文本:
徐小平,余香佳,刘广钧,刘龙.利用改进AlexNet卷积神经网络识别石墨.计算机系统应用,2022,31(2):376-383
XU Xiao-Ping,YU Xiang-Jia,LIU Guang-Jun,LIU Long.Graphite Recognition Using Improved AlexNet Convolution Neural Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):376-383
徐小平,余香佳,刘广钧,刘龙.利用改进AlexNet卷积神经网络识别石墨.计算机系统应用,2022,31(2):376-383
XU Xiao-Ping,YU Xiang-Jia,LIU Guang-Jun,LIU Long.Graphite Recognition Using Improved AlexNet Convolution Neural Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):376-383