###
计算机系统应用英文版:2022,31(2):342-349
本文二维码信息
码上扫一扫!
基于可变形卷积和语义嵌入式注意力机制的眼球超声图像分割方法
(1.贵州大学 计算机科学与技术学院, 贵阳 550025;2.贵州大学 密码学与数据安全研究所, 贵阳 550025)
Eyeball Ultrasound Image Segmentation Based on Deformable Convolution and Semantic Embedded Attention Mechanism
(1.College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;2.Institute of Cryptography and Data Secuity, Guizhou University, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 731次   下载 1419
Received:April 06, 2021    Revised:April 29, 2021
中文摘要: 眼球区域分割是医学超声图像处理和分析的关键步骤, 由于临床设备采集的眼球超声图像具有噪声干扰、区域模糊、边缘灰度相似等缺点, 从而导致现有的方法不能准确地分割出眼球区域, 因此本文基于可变形卷积提出了一种语义嵌入的注意力机制的分割方法. 首先使用可变形卷积替代传统的卷积, 提高本文网络对眼球区域的表征能力; 其次构建语义嵌入的注意力机制, 融合不同层之间的语义信息, 增强目标区域中的显著特征, 减少对背景区域的错误分割, 从而提升网络的分割准确度; 最后, 为了验证本文模型的分割性能, 分别与现有的3种深度学习分割模型进行对比, 在超声眼球图像分割数据集上, 本文方法获得了最高的准确度; 充分验证了本文的模型有较好的分割能力和鲁棒性.
Abstract:The segmentation of eyeball areas is a key step in medical ultrasound image processing and analysis. Since the eyeball ultrasound images collected by clinical equipment have disadvantages including noise interference, blurred areas, and similar edge gray levels, the existing methods cannot accurately segment eyeball areas. Therefore, this study proposes a semantic embedded attention mechanism for eyeball segmentation based on deformable convolutions. Firstly, deformable convolutions, instead of traditional convolutions, are used to improve the representational ability of the network in eyeball areas. Secondly, a semantic embedded attention mechanism is constructed to fuse semantic information among different layers, enhance the salient features in the target area, and reduce the wrong segmentation of the background area, thereby improving the segmentation accuracy of the network. Finally, in order to check the segmentation performance, the proposed model in this study is compared with three existing deep learning segmentation models, and it obtains the highest accuracy on the segmentation data set of ultrasound eyeball images, fully verifying that this model has better segmentation ability and robustness.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州省科技重大专项(20183001)
引用文本:
盛克峰,李文星.基于可变形卷积和语义嵌入式注意力机制的眼球超声图像分割方法.计算机系统应用,2022,31(2):342-349
SHENG Ke-Feng,LI Wen-Xing.Eyeball Ultrasound Image Segmentation Based on Deformable Convolution and Semantic Embedded Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2022,31(2):342-349