本文已被:浏览 713次 下载 1488次
Received:April 01, 2021 Revised:April 29, 2021
Received:April 01, 2021 Revised:April 29, 2021
中文摘要: 为了缓解软件缺陷预测的类不平衡问题,避免过拟合影响缺陷预测模型的准确率,本文提出一种面向软件缺陷预测的基于异类距离排名的过采样方法(HDR).首先,对少数类实例进行3类实例区分,去除噪声实例,减少噪声数据导致的过拟合的情况,然后基于异类距离将实例进行排名,选取相似度高的实例两两组合产生新实例,以此来提升新实例的多样性,之后将有价值的被删除的少数类实例恢复.实验将HDR算法与SMOTE算法和Borderline-SMOTE算法进行比较,采用RF分类器在NASA的8个实际项目数据集上进行,结果显示在F1-measure和G-Mean两项指标上分别有7.7%和10.6%的性能提升,实验表明HDR算法在处理数据量大并且不平衡率高的软件缺陷预测数据集上明显优于其他两种算法.
Abstract:To alleviate the class imbalance problem of software defect prediction and avoid the influence of overfitting on the accuracy of the defect prediction model, this study proposes an oversampling method for software defect prediction based on heterogeneous distance ranking (HDR). First, a minority of instances are distinguished by three classes to remove noise instances and reduce overfitting caused by noise data. Then, instances are ranked based on heterogeneous distances and paired with highly similar ones to generate new instances for the improvement of new instance diversity. Valuable minority instances that were deleted are restored afterward. The experiment compares the HDR algorithm with the SMOTE and the Borderline-SMOTE algorithms, and the RF classifier is used on the eight actual project data sets of NASA. The results show that there are 7.7% and 10.6% performance improvements on the F1-measure and G-Mean indicators respectively. Experimental results show that the HDR algorithm is significantly better than other algorithms in processing software defect prediction data sets with large data volumes and high imbalance rates.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
纪兴哲,邵培南.面向软件缺陷预测的过采样方法.计算机系统应用,2022,31(1):242-248
JI Xing-Zhe,SHAO Pei-Nan.Oversampling Method for Software Defect Prediction.COMPUTER SYSTEMS APPLICATIONS,2022,31(1):242-248
纪兴哲,邵培南.面向软件缺陷预测的过采样方法.计算机系统应用,2022,31(1):242-248
JI Xing-Zhe,SHAO Pei-Nan.Oversampling Method for Software Defect Prediction.COMPUTER SYSTEMS APPLICATIONS,2022,31(1):242-248