###
计算机系统应用英文版:2022,31(1):29-36
本文二维码信息
码上扫一扫!
基于贝叶斯网络的食品安全舆情监控探针研究
(1.贵州医科大学 公共卫生学院, 贵阳 550025;2.贵州省分析测试研究院, 贵阳 550014;3.食品安全与营养(贵州)信息科技有限公司, 贵阳 550014)
Research on Public Opinion Monitoring Probe on Food Safety Based on Bayesian Network
(1.School of Public Health, Guizhou Medical University, Guiyang 550025, China;2.Guizhou Academy of Testing and Analysis, Guiyang 550014, China;3.Food Safety and Nutrition (Guizhou) Information Technology Co. Ltd., Guiyang 550014, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 868次   下载 1845
Received:March 22, 2021    Revised:April 19, 2021
中文摘要: 针对大数据时代食品安全舆情数据采集不够快捷与准确的问题,提出一种基于贝叶斯网络的食品安全舆情监控探针的研究方法.首先,通过MySQL数据库建立食品安全关键词库;其次,运用贝叶斯网络模型将关键词库构建形成监控探针,并选定人民众云舆情监测系统进行数据采集;第三,将监控探针与传统舆情数据采集、网络爬虫技术做3组对比实验(奶类、酒类、茶类),验证其有效性.结果显示3组实验的数据挖掘时间(乳制品类3 s;酒类2.5 s;茶类2.4 s)明显降低,数据有效率(乳制品类83.6%;酒类77%;茶类77.9%)明显升高.可见关键词库引入贝叶斯网络模型形成监控探针,可有效提高食品安全舆情数据采集的及时性与精准度.
Abstract:To address the problem that the public opinion data collection on food safety is not fast and accurate enough in the era of big data, this study proposes a public opinion monitoring probe on food safety based on the Bayesian network. Firstly, the MySQL database is used to establish a food safety keyword database. Secondly, the Bayesian network model is adopted to build a monitoring probe with the keyword database, and the public opinion monitoring system of the “Zhongyun Big Data” of PeopleYun is chosen for data collection. Thirdly, the monitoring probe is compared with traditional data collection technologies on public opinions and Web crawler technologies in three groups of comparative experiments (milk, wine, and tea) to verify its effectiveness. The results show that the data mining time of the three groups of experiments (milk: 3 s; alcohol: 2.5 s; tea: 2.4 s) is significantly reduced, and the data efficiency (milk: 83.6%, alcohol: 77%, tea: 77.9%) is considerably enhanced. Therefore, introducing a keyword database into the bayesian network model to form a monitoring probe can effectively improve the timeliness and accuracy of public opinion data collection on food safety.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2017YFC1601800);贵州省科技计划(黔科合平台人才[2018]5404)
引用文本:
王旎,孙晓红,吴锴,谢锋,陶光灿.基于贝叶斯网络的食品安全舆情监控探针研究.计算机系统应用,2022,31(1):29-36
WANG Ni,SUN Xiao-Hong,WU Kai,XIE Feng,TAO Guang-Can.Research on Public Opinion Monitoring Probe on Food Safety Based on Bayesian Network.COMPUTER SYSTEMS APPLICATIONS,2022,31(1):29-36