###
计算机系统应用英文版:2021,30(11):273-280
本文二维码信息
码上扫一扫!
基于稀疏帧检测的交通目标跟踪
(长安大学 信息工程学院, 西安 710064)
Traffic Object Tracking Based on Sparse Frame Detection
(School of Information Engineering, Chang’an University, Xi’an 710064, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 765次   下载 1271
Received:February 07, 2021    Revised:March 17, 2021
中文摘要: 为了获取高速公路交通视频中目标车辆的行驶轨迹, 提出一种基于视频的多目标车辆跟踪及实时轨迹分布算法, 为交通管理系统和交通决策提供目标车辆交通信息. 首先, 使用YOLOv4算法检测目标车辆位置及置信度. 其次, 在不同场景条件下, 使用提出的基于稀疏帧检测的跟踪方法, 结合KCF跟踪算法, 将车辆数据进行关联获取完整轨迹. 最后, 用车辆分布图和交通场景俯视图显示轨迹, 便于交通管理与分析. 实验结果表明, 提出的跟踪方法在车辆跟踪中有较高的跟踪正确率, 同时基于稀疏帧检测的跟踪方法处理速度也较快, 实时轨迹分布正确反映了真实场景的车道信息以及目标车辆运动信息.
Abstract:A video-based multi-object vehicle tracking and real-time trajectory distribution algorithm is proposed to display the driving trajectories of vehicles in a highway traffic video, which can provide useful traffic information for traffic management and decision-making. Firstly, the YOLOv4 algorithm is used to detect vehicle objects. Secondly, in different traffic scenarios, the vehicle data is correlated to yield a complete trajectory by using the proposed tracking method based on sparse frame detection in combination with KCF tracking algorithm. Finally, the vehicle trajectory is displayed with the vehicle distribution map and the top view of traffic scenes, which is convenient for traffic management and analysis. Experimental results show that the proposed vehicle tracking method has an excellent tracking accuracy and a fast processing speed. The real-time trajectory distribution correctly reflects the lane information of real scenes and movement information of the object vehicles, which has a great application value.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(6207072223, 6200022622)
引用文本:
余宵雨,宋焕生,梁浩翔,王滢暄,云旭.基于稀疏帧检测的交通目标跟踪.计算机系统应用,2021,30(11):273-280
YU Xiao-Yu,SONG Huan-Sheng,LIANG Hao-Xiang,WANG Ying-Xuan,YUN Xu.Traffic Object Tracking Based on Sparse Frame Detection.COMPUTER SYSTEMS APPLICATIONS,2021,30(11):273-280