本文已被:浏览 819次 下载 2057次
Received:March 04, 2021 Revised:March 31, 2021
Received:March 04, 2021 Revised:March 31, 2021
中文摘要: 社会网络数据的发布可能导致用户隐私被泄露, 例如用户的身份信息可能被恶意攻击者通过分析网络中节点的度数识别出来, 针对这个问题提出一种基于节点平均度的k-度匿名隐私保护方案. 方案首先利用基于平均度的贪心算法对社会网络节点进行划分, 使得同一分组中节点的度都修改成平均度, 从而生成k-度匿名序列; 然后利用优先保留重要边的图结构修改方法对图进行修改, 从而实现图的k-度匿名化. 本方案在生成k-度匿名序列时引入平均度, 提高了聚类的精度, 降低了图结构修改的代价. 同时, 由于在图结构修改时考虑了衡量边重要性的指标—邻域中心性, 重要的边被优先保留, 保持了稳定的网络结构. 实验结果表明, 本方案不仅能有效地提高网络抵抗度攻击的能力, 还能极大降低信息损失量, 在保护用户隐私的同时提高了发布数据的可用性.
Abstract:The release of social network data may lead to the disclosure of user privacy; for example, the user identity may be recognized by malicious attackers by analyzing the degree of nodes in the network. Concerning this problem, a k-degree anonymous privacy protection scheme based on the average degree of nodes is proposed. The scheme first depends on the greedy algorithm based on the average degree to divide social network nodes, so that the degrees of nodes in the same group are modified to the average degree, thus generating k-degree anonymous sequences; then the graph structure modification method with priority to retain important edges is used to modify the graph, thus achieving k-degree anonymity of the graph. In this scheme, the average degree is introduced when k-degree anonymous sequences are generated, which improves clustering accuracy and reduces the cost of graph structure modification. At the same time, because the indicator-neighborhood centrality, which measures the importance of edges, is considered in the graph structure modification, important edges are retained in preference, and a stable network structure is maintained. The experimental results show that this scheme improves the network resistance to degree attacks, greatly reduces information loss, and improves the utility of published data while protecting user privacy.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(U1905211, 61771140, 61702100, 61702103); 福建省教育厅中青年科研项目(JAT200968); 企事业合作项目(DH-1565, DH-1412)
引用文本:
许佳钰,章红艳,许力,周赵斌.社会网络中基于节点平均度的k-度匿名隐私保护方案.计算机系统应用,2021,30(12):308-316
XU Jia-Yu,ZHANG Hong-Yan,XU Li,ZHOU Zhao-Bin.k-Degree Anonymous Privacy Protection Scheme Based on Average Degree of Node in Social Networks.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):308-316
许佳钰,章红艳,许力,周赵斌.社会网络中基于节点平均度的k-度匿名隐私保护方案.计算机系统应用,2021,30(12):308-316
XU Jia-Yu,ZHANG Hong-Yan,XU Li,ZHOU Zhao-Bin.k-Degree Anonymous Privacy Protection Scheme Based on Average Degree of Node in Social Networks.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):308-316