###
计算机系统应用英文版:2021,30(12):116-122
本文二维码信息
码上扫一扫!
优化YOLOv4算法的安检X光图像检测网络
(长安大学 电子与控制工程学院, 西安 710021)
X-Ray Security Image Detection Network Based on Optimized YOLOv4
(School of Electronics and Control Engineering, Chang’an University, Xi’an 710021, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 904次   下载 1703
Received:March 09, 2021    Revised:March 31, 2021
中文摘要: 针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题, 文章提出一种名为Res152-YOLO的网络架构, 该架构基于YOLOv4 (You Only Look Once)优化目标检测网络. 为提高对X光图像中危险品的检测精度, Res152-YOLO采用ResNet-152网络代替原YOLOv4中的CSPDarknet-53网络, 将改进后的ResNet残差网络与YOLOv4网络连接. 实验中利用YOLOv4、Res152-YOLO等一系列网络在同一数据集上进行对比实验, 分别比较上述网络的损失曲线、对各类危险品的检测性能以及各网络的总体性能. 结果表明, Res152-YOLO网络在以上实验中性能优于原YOLOv4网络, 并且满足安检设备的帧率要求. 改进后的网络有效提高了安检的准确率, 能够消除一定的安全隐患.
Abstract:Given the diverse prohibited varieties in current security inspection scenes and low-efficiency error-prone manual inspections, this study proposes network architecture, Res152-YOLO, based on the YOLOv4 optimized target detection network. Res152-YOLO uses the ResNet-152 network to replace the CSPDarknet-53 network in the original YOLOv4 and connects the improved ResNet to the YOLOv4 network to enhance the detection accuracy of dangerous goods in X-ray images. A series of networks such as YOLOv4 and Res152-YOLO are used to conduct comparative experiments on the same data set to compare the loss curves of the above-mentioned networks, the detection results for various dangerous goods, and the overall performance of each network. The results show that the improved network can improve the accuracy of security detection and eliminate potential safety hazards.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
杨嘉诚,黄佳慧,韩永麟,王萍,李晓辉.优化YOLOv4算法的安检X光图像检测网络.计算机系统应用,2021,30(12):116-122
YANG Jia-Cheng,HUANG Jia-Hui,HAN Yong-Lin,WANG Ping,LI Xiao-Hui.X-Ray Security Image Detection Network Based on Optimized YOLOv4.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):116-122