###
计算机系统应用英文版:2021,30(12):194-201
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于可解释集成学习的信贷违约预测
(北京工商大学 计算机学院, 北京 100048)
Prediction of Credit Default Based on Interpretable Integration Learning
(School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 960次   下载 1993
Received:March 02, 2021    Revised:March 29, 2021
中文摘要: 人工智能促进了风控行业的发展, 智能风控的核心在于风险控制, 信贷违约预测模型是解决这一问题必须倚靠的手段. 传统的解决方案是基于人工和广义线性模型建立的, 然而现在通过网络完成的交易数据, 具有高维性和多重来源等特点, 远远超出了现有模型的处理能力, 对于传统风控提出了巨大的挑战. 因此, 本文提出一种基于融合方法的可解释信贷违约预测模型, 首先选取LightGBM、DeepFM和CatBoost作为基模型, CatBoost作为次模型, 通过模型融合提升预测结果的准确性, 然后引入基于局部的、与模型无关的可解释性方法LIME, 解释融合模型的预测结果. 基于真实数据集的实验结果显示, 该模型在信贷违约预测任务上具有较好的精确性和可解释性.
Abstract:Artificial intelligence accelerates the development of the risk control industry. Undoubtedly, risk control is the core of intelligent risk control, and a credit default prediction model is its essential means. The traditional access to risk control is based on artificial and generalized linear models. However, the data of transactions completed on the Internet are characterized by high dimensions and multiple sources, which cannot be processed by existing models. This poses a great challenge to traditional risk control. In view of this, this study proposes an interpretable credit default model based on the fusion method. To be specific, the accuracy of the prediction results is first enhanced through the fusion of base models (LightGBM, DeepFM, and CatBoost) and secondary model (CatBoost). Then, the prediction result of the fusion model is interpreted by the introduced local-based interpretability method LIME that is independent of the model. According to the experimental result of a real dataset, the satisfactory accuracy and interpretability of the model can be witnessed on the task of credit default prediction.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61702020); 北京市自然科学基金-海淀原始创新联合基金(L182007)
引用文本:
蔡青松,吴金迪,白宸宇.基于可解释集成学习的信贷违约预测.计算机系统应用,2021,30(12):194-201
CAI Qing-Song,WU Jin-Di,BAI Chen-Yu.Prediction of Credit Default Based on Interpretable Integration Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):194-201