###
计算机系统应用英文版:2021,30(12):147-154
本文二维码信息
码上扫一扫!
基于XGBoost和社区发现的主机攻击行为检测
(西南交通大学 信息科学与技术学院, 成都 611756)
Host Attack Detection Based on XGBoost and Community Discovery
(School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 735次   下载 1441
Received:February 22, 2021    Revised:March 28, 2021
中文摘要: 在大规模网络环境下, 主机面临的安全威胁也愈发多样. 随着基于机器学习检测恶意文件的技术快速崛起, 极大的提升了对恶意软件的检测能力, 也迫使对手改变了攻击策略. 其中“Living off the land”策略通过调用操作系统工具或者执行任务的自动化管理程序来实现恶意行为. 威胁检测可以从父子进程的上下文中发现可疑行为, 将父子进程链及其派生的相关事件看作无向图, 应用监督学习XGBoost算法进行权重分配, 生成无向加权图. 最后使用社区发现算法从图中识别出更大的攻击序列, 在MIRTE ATT & CK仿真攻击数据集上进行验证.
中文关键词: 主机攻击行为  XGBoost  社区发现  图分析
Abstract:In a large-scale network, the security threats faced by the host are becoming increasingly diverse. With the rapid rise of technology based on machine learning to detect malicious files, the ability to detect malware has been greatly improved, and it has also forced adversaries to change their attack strategies. Among them, the “Living off the land” strategy achieves malicious behavior by calling operating system tools or automated management programs that perform tasks. Threat detection can find suspicious behavior in the context of parent and child processes. The parent-child process chain and the related events derived from it are regarded as an undirected graph, and the supervised learning XGBoost algorithm is used for weight distribution to generate an undirected weighted graph. Finally, a community discovery algorithm is employed to identify larger attack sequences from the graph. The above algorithm is verified on the simulated attack dataset of MIRTE ATT & CK.
文章编号:     中图分类号:    文献标志码:
基金项目:四川省科技计划(2021YJ0372, 2019ZDZX0007); 中央高校基本科研业务费专项(2682019CX63)
引用文本:
朱元庆,李赛飞,李洪赭.基于XGBoost和社区发现的主机攻击行为检测.计算机系统应用,2021,30(12):147-154
ZHU Yuan-Qing,LI Sai-Fei,LI Hong-Zhe.Host Attack Detection Based on XGBoost and Community Discovery.COMPUTER SYSTEMS APPLICATIONS,2021,30(12):147-154