###
计算机系统应用英文版:2021,30(10):295-300
本文二维码信息
码上扫一扫!
基于堆叠沙漏网络的人体姿态估计
(贵州大学 计算机科学与技术学院, 贵阳 550025)
Human Pose Estimation Based on Stacked Hourglass Network
(College of Computer Science and Technology, Guizhou University, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 862次   下载 1842
Received:January 05, 2021    Revised:February 03, 2021
中文摘要: 人体姿态估计在许多计算机视觉任务中起着重要的作用, 然而, 由于姿态的多变、光照、遮挡和分辨率低等因素, 它仍然是一个具有挑战性的问题. 利用深层卷积神经网络的高级语义信息是提高人体姿态估计精度的有效途径, 本文提出了一种改进的堆叠沙漏网络, 设计了一个大感受野残差模块和预处理模块来更好地获得人体结构特征, 以此获得丰富的上下文信息, 对部分遮挡、大姿态变化、复杂背景等有较好的效果, 此外, 还对不同阶段的结果进行了融合, 以进一步提高定位精度, 在 MPII 数据集和 LSP 数据集上对本文提出的模型进行实验和验证, 结果证明了本文模型的有效性.
Abstract:Human pose estimation plays an important role in many computer vision tasks. However, it remains challenging due to complex pose changes, illumination, occlusion, and low resolution. The high-level semantic information from deep convolutional neural networks provides an effective way to improve the accuracy of human pose estimation. In this study, an improved stacked hourglass network is proposed. A large-receptive-field residual module and a preprocessing module are designed to better outline structural features of a human body so that rich contextual information can be obtained. The network performs well in the presence of partial occlusion, large pose change, complex background, etc. In addition, the positioning accuracy is further enhanced by the fusion of results from different stages. Experiments on MPII data sets and LSP data sets prove the effectiveness of this model.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州省自然科学技术基金 (黔科合基础[2019]1088)
引用文本:
吴佳豪,周凤,李亮亮.基于堆叠沙漏网络的人体姿态估计.计算机系统应用,2021,30(10):295-300
WU Jia-Hao,ZHOU Feng,LI Liang-Liang.Human Pose Estimation Based on Stacked Hourglass Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(10):295-300