###
计算机系统应用英文版:2021,30(10):280-286
本文二维码信息
码上扫一扫!
基于多尺度特征融合与注意力机制的脊柱CT图像分割
(1.杭州师范大学 杭州国际服务工程学院, 杭州 311121;2.杭州三坛医疗有限公司, 杭州 310018;3.浙江大学, 杭州 310058)
Segmentation of Spine CT Images Based on Multi-Scale Feature Fusion and Attention Mechanism
(1.Hangzhou Institute of International Service Engineering, Hangzhou Normal University, Hangzhou 311121, China;2.Hangzhou Santa Medical Technology Co. Ltd., Hangzhou 310018, China;3.Zhejiang University, Hangzhou 310058, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1120次   下载 2803
Received:December 30, 2020    Revised:January 29, 2021
中文摘要: 本文针对医学脊柱CT图像因骨密度不均匀、骨骼结构复杂或图像成像分辨率低等因素造成的分割精度较低的问题, 提出一种基于卷积-反卷积神经网络的CT图像脊柱分割方法. 通过引入多尺度残差模块及注意力机制改进U-Net网络, 训练特征模型并进行测试. 在真实数据集上的实验结果表明, 该方法能有效提高CT图像中脊柱的分割精度及分割效率, Dice系数评估值为0.97, IOU系数评估值为0.94.
Abstract:Medical spine CT images have low segmentation accuracy due to uneven vertebral bone density, complex vertebral structure and low imaging resolution. To tackle these problems, this study proposes a segmentation method for spine CT images with a convolutional-deconvolutional neural network. The multi-scale residual module and the attention mechanism are introduced to improve the U-Net network, and the feature model is trained and tested. Experimental results on real data sets show that this method can effectively improve the accuracy and the efficiency of spine CT image segmentation. The estimated results of Dice coefficient and Intersection Over Union (IOU) are 0.97 and 0.94, respectively.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省教育厅一般科研项目(Y202044994); 浙江省研究生教育学会科研项目; 杭州师范大学第二轮专业学位研究生课程教学案例库建设
引用文本:
金顺楠,周迪斌,何斌,顾静军.基于多尺度特征融合与注意力机制的脊柱CT图像分割.计算机系统应用,2021,30(10):280-286
JIN Shun-Nan,ZHOU Di-Bin,HE Bin,GU Jing-Jun.Segmentation of Spine CT Images Based on Multi-Scale Feature Fusion and Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(10):280-286