###
计算机系统应用英文版:2021,30(7):239-245
本文二维码信息
码上扫一扫!
基于多特征融合的智能客服模型
(杭州师范大学 信息科学与工程学院, 杭州 311121)
Intelligent Customer Service Model Based on Multi-Feature Fusion
(School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 829次   下载 1742
Received:November 06, 2020    Revised:December 12, 2020
中文摘要: 智能客服利用人工智能技术准确回答用户的咨询问题, 良好的句子相似度算法可以提高智能客服中问答的准确度.本文针对金融证券领域客服, 提出了基于多特征融合的句子相似度算法模型, 提高了客服的智能性. 通过矩阵拼接的方式, 融合用户提问语句和知识库语句的词形特征和语义特征, 其中词形特征考虑N-gram相似度、编辑距离、Jaccard相似度三种词形信息, 并针对语义特征提取, 提出了基于多头注意力机制(multi-head attention)的神经网络模型LBMA. 利用上述融合的特征, 运用机器学习分类器判断两个语句是否相似, 并将分类器分类结果作为多特征融合模型的计算结果. 在尽量不改变语义信息的前提下, 通过数据增强(Data Augmentation, DA)技术扩充数据集, 提升了模型泛化能力. 实验结果表明, 与已有方法相比, 该模型在智能客服数据集上能够有效提升相似度计算的准确性, 准确率达到94.69%.
Abstract:Intelligent customer service accurately answers users’ inquiries with artificial intelligence technology, and a good sentence similarity algorithm can improve the accuracy of questions and answers. In this study, we focus on the customer service in financial securities and propose a multi-feature fusion-based sentence similarity algorithm model, which improves the intelligence of customer service. Matrix splicing is adopted to fuse the morphological and semantic features of user question sentences and knowledge base sentences. The morphological features include N-gram similarity, edit distance, and Jaccard similarity. To extract semantic features, we propose a multi-head attention based neural network model named LBMA. With these fused features, a machine learning classifier is used to determine whether two sentences are similar, and the classification result of the classifier is regarded as the calculation result of the multi-feature fusion model. On the premise of not changing the semantic information as much as possible, the data set is expanded through data augmentation to improve the generalization of the model. Experimental results show that the proposed model can calculate the similarity of customer service data sets at an accuracy of 94.69%, higher than that of existing methods.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61571174);杭州师范大学星光计划项目
引用文本:
李美玲,任亚伟,孙军梅,李秀梅,何鑫睿.基于多特征融合的智能客服模型.计算机系统应用,2021,30(7):239-245
LI Mei-Ling,REN Ya-Wei,SUN Jun-Mei,LI Xiu-Mei,HE Xin-Rui.Intelligent Customer Service Model Based on Multi-Feature Fusion.COMPUTER SYSTEMS APPLICATIONS,2021,30(7):239-245