###
计算机系统应用英文版:2021,30(9):330-335
本文二维码信息
码上扫一扫!
用于大规模图像识别的特深卷积网络
(东北石油大学 计算机与信息技术学院, 大庆 163318)
Extra Deep Convolutional Networks for Large-Scale Image Recognition
(College of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 909次   下载 1464
Received:October 06, 2020    Revised:October 30, 2020
中文摘要: 卷积网络深度对大规模图像识别的准确性有不可忽视的影响. 使用具有非常小(3×3)卷积滤波器的架构, 我们对深度不断增长的网络进行了全面评估. 通过将深度推到16–19重量层可以实现对现有技术配置的显着改进. 通过比对其他卷积滤波器架构的卷积网络, 我们验证了我们提出的网络对大规模图像识别的改进效果. 同时为了避免训练数据集内在的偏倚, 我们还使用了其他数据集对网络进行了验证, 在这些数据集中, 它们可以获得最先进的结果.
Abstract:The convolutional network depth is crucial to accurate large-scale image recognition. In this work, we thoroughly evaluate the networks with increasing depth using the architecture with quite small (3×3) convolution filters. The prior-art configurations can be improved significantly after the depth is pushed to 16–19 weight layers. The comparison with the convolution networks of other convolution filter architectures verifies the effectiveness of the proposed network for large-scale image recognition. In addition, the network verification is conducted with some other data sets to avoid the inherent bias of training data sets. As a result, the most advanced results can be obtained from these data sets.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(51774090); 黑龙江省自然科学基金(LH2019F004); 东北石油大学引导基金(2020YDL-15)
引用文本:
李荟,王梅.用于大规模图像识别的特深卷积网络.计算机系统应用,2021,30(9):330-335
LI Hui,WANG Mei.Extra Deep Convolutional Networks for Large-Scale Image Recognition.COMPUTER SYSTEMS APPLICATIONS,2021,30(9):330-335