###
计算机系统应用英文版:2021,30(5):99-106
本文二维码信息
码上扫一扫!
基于深度学习和区块链的JavaScript恶意代码检测系统
(1.江苏科技大学 计算机学院, 镇江 212000;2.中国船舶科学研究中心 软件工程技术中心, 无锡 214082)
JavaScript Malicious Code Detection System Based on Deep Learning and Blockchain
(1.School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212000, China;2.Software Engineering Technology Center, China Ship Science Research Center, Wuxi 214082, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 941次   下载 2586
Received:September 14, 2020    Revised:October 13, 2020
中文摘要: 目前基于深度学习的恶意代码检测技术是恶意代码检测领域的研究热点, 然而大多数研究集中于如何改进算法来提高恶意代码检测的准确率, 忽略了恶意代码数据集样本标签的不足导致无法训练出高质量的模型. 本文利用区块链技术来解决恶意代码检测数据样本孤岛和数据可信任的问题; 同时在代码特征提取上, 使用马尔可夫图算法提取特征; 基于分布式深度学习的训练融合区块链去中心化, 可溯源不可篡改的优势, 将不同算力贡献者采用同步训练更新模型参数. 通过仿真实验和理论分析验证了该方法的可行性和巨大的潜力.
Abstract:At the moment, the detection technology of malicious code based on deep learning is a research hotspot in the field of malicious code detection. However, most researches focus on how to improve the algorithm to enhance the detection accuracy of malicious code, but ignore the lack of sample tags in the data set of malicious code, failling to train high-quality models. In this study, the problem of detecting isolated islands of data samples and data trustworthiness of malicious code is solved by Blockchain technology, and code features are extracted with the Markov graph algorithm. The training fusion block chain based on distributed deep learning has the advantages of decentralization, traceability and non-tampering, and the contributors of different computing power adopt synchronous training to update model parameters. The feasibility and great potential of this method are verified by simulation experiments and theoretical analysis.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈鹏,韩斌,洪华军.基于深度学习和区块链的JavaScript恶意代码检测系统.计算机系统应用,2021,30(5):99-106
CHEN Peng,HAN Bin,HONG Hua-Jun.JavaScript Malicious Code Detection System Based on Deep Learning and Blockchain.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):99-106