本文已被:浏览 1348次 下载 2596次
Received:September 10, 2020 Revised:October 09, 2020
Received:September 10, 2020 Revised:October 09, 2020
中文摘要: 深度学习在图像识别领域凸显出了优势, 而在深度学习图像识别模型训练的准备阶段, 制备图像数据集需要人工将图片上的信息进行标注. 这一准备过程往往需要耗费大量人力成本与时间成本. 为了提升数据制备阶段的工作效率, 从而加速深度学习模型的生成与迭代, 提出了一种基于微服务架构的多人协作众包式图像数据集标注系统. 通过将繁重的标注任务划分为不同的小任务, 使更多的人能够参与并协同完成数据标定. 通过引入对象存储机制并采用微服务架构, 提升了系统性能, 在开发阶段使用了基于Gitlab的持续集成与持续部署, 实现了系统的快速迭代与部署, 提升了微服务系统在开发过程中的集成效率.
中文关键词: 微服务 Spring Cloud 持续集成 持续部署 图像标注
Abstract:Deep learning has shown visible advantages in the artificial intelligence-based image classification. It usually costs plenty of time on manual information annotation for preparing image datasets. Then this study proposes an online collaborative system for image dataset annotation based on microservice architecture to improve the efficiency of annotating datasets and thus to accelerate the generation and iteration of deep learning models and applications. More users can join for image annotation after the heavy annotation task is divided into smaller ones. Besides, the system performance has been improved by introducing an object storage system and microservice architecture, and the integration efficiency of the system in the development progress has been enhanced by continuous integration and deployment.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(62072469); 国家重点科研计划(2018YFE0116700); 山东省自然科学基金(ZR2019MF049); 中央高校基础研究基金(2015020031); 西海岸人工智能技术创新中心建设专项(2019-1-5, 2019-1-6); 上海可信工业控制平台开放项目(TICPSH202003015-ZC)
引用文本:
袁晓晨,张卫山,高绍姝,时斌,赵永俊,王冶,安云云.基于微服务架构的众包图像数据集标注系统.计算机系统应用,2021,30(5):83-91
YUAN Xiao-Chen,ZHANG Wei-Shan,GAO Shao-Shu,SHI Bin,ZHAO Yong-Jun,WANG Ye,AN Yun-Yun.Image Dataset Annotation System in Crowdsourcing Based on Microservice Architecture.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):83-91
袁晓晨,张卫山,高绍姝,时斌,赵永俊,王冶,安云云.基于微服务架构的众包图像数据集标注系统.计算机系统应用,2021,30(5):83-91
YUAN Xiao-Chen,ZHANG Wei-Shan,GAO Shao-Shu,SHI Bin,ZHAO Yong-Jun,WANG Ye,AN Yun-Yun.Image Dataset Annotation System in Crowdsourcing Based on Microservice Architecture.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):83-91