本文已被:浏览 696次 下载 1646次
Received:September 10, 2020 Revised:October 09, 2020
Received:September 10, 2020 Revised:October 09, 2020
中文摘要: 针对推荐系统广泛采用的协同过滤算法存在的稀疏性和冷启动问题, 提出了一种基于深度神经网络和动态协同滤波的推荐模型. 该模型采用预训练BERT模型结合双向GRU从用户和商品评论中提取隐含特征向量, 利用耦合CNN构建评分预测矩阵, 通过动态协同滤波融入用户兴趣变化的时间特征. 在亚马逊公开数据集上进行实验, 结果表明该模型提高了商品评分预测的准确性.
Abstract:Collaborative filtering algorithm widely used in the recommendation systems has the problems of sparseness and cold start. For this reason, a recommendation model based on deep neural networks and dynamic collaborative filtering is proposed in this study. The model combines a pre-trained BERT model with bidirectional GRU to extract hidden feature vectors from users and commodity reviews. Furthermore, coupled CNN is used to construct the score prediction matrix and the temporal changes in user interests are incorporated through dynamic collaborative filtering. Finally, the experiments on an Amazon’s data set show that the proposed model increases the accuracy of commodity score prediction.
keywords: commodity recommendation BERT model bidirectional GRU coupled CNN dynamic collaborative filtering
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
倪美玉,曹为刚.基于深度神经网络的个性化混合商品推荐模型.计算机系统应用,2021,30(5):184-189
NI Mei-Yu,CAO Wei-Gang.Personalized Hybrid Recommendation Model Based on Deep Neural Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):184-189
倪美玉,曹为刚.基于深度神经网络的个性化混合商品推荐模型.计算机系统应用,2021,30(5):184-189
NI Mei-Yu,CAO Wei-Gang.Personalized Hybrid Recommendation Model Based on Deep Neural Network.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):184-189