###
计算机系统应用英文版:2021,30(4):32-38
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于深度学习的无人机入侵检测方法
(海军工程大学 电气工程学院, 武汉 430032)
UAV Intrusion Detection Method Based on Deep Learning
(College of Electrical Engineering, Naval University of Engineering, Wuhan 430032, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1132次   下载 3419
Received:August 22, 2020    Revised:September 15, 2020
中文摘要: 无人机滥用给低空范围带来巨大安全隐患, 非法入侵无人机目标的检测问题成为低空防御系统中重要的研究方向. 本文提出一种基于雷达、RGB相机等多传感器信息融合方法, 用于探测低空范围内小目标物体. 然后, 引入SSD (Single Shot multibox Detector)深度学习算法, 训练无人机目标检测模型, 对RGB相机捕获到画面中物体类别与位置进行预测. 通过搭建实验平台验证信息融合方法能够成功获得目标位置、速度以及外观形态等特征, 深度学习模型能够成功判断可疑目标的类别.
中文关键词: 无人机  信息融合  深度学习  目标检测
Abstract:The abuse of Unmanned Aerial Vehicles (UAVs) brings great security risks to the low altitude area. Then the research on detection of UAVs’ illegal intrusion has become important for a low-altitude defense system. In this study, a multi-sensor information fusion technique based on radar and a RGB camera is designed to detect small objects in the low altitude range. After that, the Single Shot multibox Detector (SSD) for deep learning is introduced to train the UAV detection model and predict the category and location of objects captured by the RGB camera. An experimental platform is built to verify that the information fusion method can collect the location, speed, appearance of targets, and the deep learning model can determine the categories of suspicious targets.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(41771487)
引用文本:
陈帅,尹洋,杨全顺.基于深度学习的无人机入侵检测方法.计算机系统应用,2021,30(4):32-38
CHEN Shuai,YIN Yang,YANG Quan-Shun.UAV Intrusion Detection Method Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2021,30(4):32-38