本文已被:浏览 919次 下载 1541次
Received:September 03, 2020 Revised:September 25, 2020
Received:September 03, 2020 Revised:September 25, 2020
中文摘要: 电商数据所属类别对于分析电商数据有重要意义, 基于人力的分类无法适应如今海量的电商数据, 基于传统算法模型的分类难以提取有价值的人工特征. 本文采用BiLSTM模型并且引入注意力机制, 将其应用于电商数据分类中. 该模型包括Embedding层、BiLSTM层、注意力机制层和输出层. Embedding层加载Word2Vec开源工具训练得到的词向量, BiLSTM层捕捉每个词语的上下文信息, 注意力机制层为每个词语分配权重, 合成新的样本特征. 实验表明, 基于逆类别率的注意力机制在电商数据的分类准确率达到91.93%, 与不加注意力机制的BiLSTM模型和其他引入的注意力机制相比, 均有不同程度的提高. 此模型电商数据分类中有良好的效果, 为注意力机制的引入提供了新的思考方向.
Abstract:The category of e-commerce data is of great significance for its analysis. The classification based on human resources cannot adapt to the massive e-commerce data nowadays, and the classification based on traditional algorithm models can hardly extract valuable artificial features. In this study, the BiLSTM model integrated with an attention mechanism is introduced to classify e-commerce data. The model includes embedding layer, BiLTM layer, attention mechanism layer, and output layer. The embedding layer loads the word vector trained by Word2Vec; the BiLSTM layer captures the context of each word; the attention mechanism layer allocates weights for each word to synthesize new sample features. The experimental results show that the classification accuracy of the attention mechanism based on the inverse class frequency reaches 91.93%, which is improved compared with the BiLSTM model without the attention mechanism and other attention mechanisms introduced. This model has a good effect in the classification of e-commerce data and points out a new thinking direction for the introduction of attention mechanisms.
文章编号: 中图分类号: 文献标志码:
基金项目:武汉科技大学大学生创新创业训练计划(18ZRA078); 国家社会科学基金重大计划(11&ZD189)
引用文本:
王维,胡慧君,刘茂福.基于逆类别注意力机制的电商文本分类.计算机系统应用,2021,30(5):247-252
WANG Wei,HU Hui-Jun,LIU Mao-Fu.E-Commerce Text Classification Based on Reverse Category Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):247-252
王维,胡慧君,刘茂福.基于逆类别注意力机制的电商文本分类.计算机系统应用,2021,30(5):247-252
WANG Wei,HU Hui-Jun,LIU Mao-Fu.E-Commerce Text Classification Based on Reverse Category Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2021,30(5):247-252