###
计算机系统应用英文版:2021,30(3):24-32
本文二维码信息
码上扫一扫!
依存约束的图网络实体关系联合抽取
(中国石油大学(华东) 计算机与技术科学学院, 青岛 266580)
Graph Network with Dependency Constraints for Joint Entity and Relationship Extraction
(College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 997次   下载 2850
Received:July 16, 2020    Revised:August 13, 2020
中文摘要: 实体关系抽取是信息抽取的关键任务之一, 是一种包含实体抽取和关系抽取的级联任务. 传统的实体关系抽取方式是将实体与关系抽取任务分离的Pipeline方式, 忽略了两个任务的内在联系, 导致关系抽取的效果严重依赖实体抽取, 容易引起误差的累积. 为了规避这种问题, 我们提出一种端到端的实体关系联合抽取模型, 通过自注意力机制学习单词特征, 基于句法依存图蕴含的依赖信息构建依存约束, 然后将约束信息融入图注意力网络来实现实体与关系的抽取. 通过在公共数据集NYT上进行实验证明了我们工作的先进性和显著性, 我们的模型在保持高精度的情况下, 召回率有了显著的提升, 比以往工作中的方法具有更好的抽取性能.
Abstract:Entity relationship extraction is one of the key tasks of information extraction, which involves a multi-task cascade including entity extraction and relationship extraction. Traditional methods of entity relationship extraction follow a mode of Pipeline which separates entity extraction from relationship extraction, ignoring the internal connection between the two. As a result, the effect of relationship extraction depends heavily on entity extraction, and it is prone to error accumulation. To avoid this problem, we propose an end-to-end joint entity and relationship extraction model, which relies on the self-attention mechanism to learn word features, constructs dependency constraints based on dependency information contained in syntactic dependency graphs, and then integrates constraint information into a graph attention network for entity and relationship extraction. Experiments on the public data set NYT demonstrate the advance and significance of our model which has a high recall rate and better extraction performance than previous methods.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
任鹏程,于强,侯召祥.依存约束的图网络实体关系联合抽取.计算机系统应用,2021,30(3):24-32
REN Peng-Cheng,YU Qiang,HOU Zhao-Xiang.Graph Network with Dependency Constraints for Joint Entity and Relationship Extraction.COMPUTER SYSTEMS APPLICATIONS,2021,30(3):24-32