本文已被:浏览 885次 下载 1913次
Received:May 01, 2020 Revised:May 27, 2020
Received:May 01, 2020 Revised:May 27, 2020
中文摘要: 随着深度学习技术的发展, 自然场景文本检测的性能获得了显著的提升. 但目前仍然存在两个主要的挑战: 一是速度和准确度之间的权衡, 二是对任意形状的文本实例的检测. 本文采用基于分割的方法高效准确的检测任意形状场景文本. 具体来说, 使用具有低计算成本的分割头和简洁高效的后处理, 分割头由特征金字塔增强模块和特征融合模块组成, 前者可以引入多层次的信息来指导更好的分割, 后者可以将前者给出的不同深度的特征集合成最终的特征进行分割. 本文采用可微二值化模块, 自适应地设置二值化阈值, 将分割方法产生的概率图转换为文本区域, 从而提高文本检测的性能. 在标准数据集ICDAR2015和Total-Text上, 本文提出的方法使用轻量级主干网络如ResNet18在速度和准确度方面都达到了可比较的结果.
Abstract:With the development of deep learning technology, the performance of natural scene text detection has been significantly improved. Nonetheless, two main challenges still exist: the first problem is the trade-off between speed and accuracy, and the second one is to model the arbitrary-shaped text instance. In this study, we propose a segmentation-based method to tackle arbitrary-shaped text detection efficiently and accurately. Specifically, we use a low computational-cost segmentation head and efficient post-processing. The segmentation head is made up of Feature Pyramid Enhancement Module (FPEM) and Feature Fusion Module (FFM). FPEM can introduce multi-level information to guide the better segmentation. FFM can integrate the features given by the FPEMs of different depths into a final feature for segmentation. We use a Differentiable Binarization (DB) module, which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. On the standard datasets ICDAR2015 and Total-Text, the method proposed in this study uses a lightweight backbone network such as ResNet18 to achieve comparable results in terms of speed and accuracy.
keywords: natural scene text detection segmentation feature pyramid enhancement module feature fusion module differentiable binarization module
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation | |
CAI Xin-Xin | College of Computer and Information, Hohai University, Nanjing 211100, China | 2360866893@qq.com |
WANG Min | College of Computer and Information, Hohai University, Nanjing 211100, China |
Author Name | Affiliation | |
CAI Xin-Xin | College of Computer and Information, Hohai University, Nanjing 211100, China | 2360866893@qq.com |
WANG Min | College of Computer and Information, Hohai University, Nanjing 211100, China |
引用文本:
蔡鑫鑫,王敏.基于分割的任意形状场景文本检测.计算机系统应用,2020,29(12):257-262
CAI Xin-Xin,WANG Min.Arbitrary Shape Scene Text Detection Based on Segmentation.COMPUTER SYSTEMS APPLICATIONS,2020,29(12):257-262
蔡鑫鑫,王敏.基于分割的任意形状场景文本检测.计算机系统应用,2020,29(12):257-262
CAI Xin-Xin,WANG Min.Arbitrary Shape Scene Text Detection Based on Segmentation.COMPUTER SYSTEMS APPLICATIONS,2020,29(12):257-262