###
计算机系统应用英文版:2020,29(12):228-233
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
自适应加权低秩约束的多视图子空间聚类算法
(1.山西医科大学汾阳学院, 汾阳 032200;2.北方自动控制技术研究所, 太原 030006)
Adaptive Weighted Low-Rank Constrained Multi-View Subspace Clustering
(1.Fenyang College of Shanxi Medical University, Fenyang 032200, China;2.North Automatic Control Technology Institute, Taiyuan 030006, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 869次   下载 2222
Received:April 25, 2020    Revised:May 27, 2020
中文摘要: 多视图聚类旨在综合利用视图数据中的一致信息和互补信息实现对数据的划分, 但各视图表征数据的能力参差不齐, 甚至有的视图可能含有大量的冗余和噪声信息, 不仅不能带来多样的信息, 反而影响聚类性能. 本文提出了自适应加权的低秩约束的多视图子空间聚类算法, 通过自适应学习的方式给各视图赋予不同权重来构造各视图共享的潜在一致低秩矩阵. 并且提出了有效的可迭代优化算法对模型进行优化. 在5个公开数据集上的实验结果表明所提算法的有效性.
Abstract:The goal of multi-view clustering is to divide data exploiting the consistent and complementary information from various views. However, the ability to represent data varies from view to view, and some views may even contain a lot of redundant and noise information which not only cannot bring diverse information, but also affect the clustering performance. In this study, an adaptive weighted low-rank constrained multi-view subspace clustering algorithm is proposed, which construct the latent consensus low-rank matrix shared by each view and each view is given adaptively learned weights. An effective iterative optimization algorithm is proposed to optimize the model. Experimental results on five real data sets show the effectiveness of the proposed algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:2017年山西省教育规划课题(GH-17105); 山西医科大学汾阳学院人才引进启动基金(2018D06)
引用文本:
刘金花,岳根霞,王洋,贺潇磊.自适应加权低秩约束的多视图子空间聚类算法.计算机系统应用,2020,29(12):228-233
LIU Jin-Hua,YUE Gen-Xia,WANG Yang,HE Xiao-Lei.Adaptive Weighted Low-Rank Constrained Multi-View Subspace Clustering.COMPUTER SYSTEMS APPLICATIONS,2020,29(12):228-233