###
计算机系统应用英文版:2021,30(1):129-134
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于成对约束的SubKMeans聚类数确定算法
(福州大学 数学与计算机科学学院, 福州 350108)
SubKMeans Algorithm for Determining Number of Clusters Based on Pairwise Constraints
(School of Mathematics and Computing Science, Fuzhou University, Fuzhou 350108, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 972次   下载 1666
Received:April 09, 2020    Revised:May 10, 2020
中文摘要: 随着数据维度的增加, 传统聚类算法会出现聚类性能差的现象. SubKMeans是一种功能强大的子空间聚类算法, 旨在为K-Means类算法搜索出一个最佳子空间, 降低高维度影响, 但是该算法需要用户事先指定聚类数目K值, 而在实际使用中有时无法给出准确的K值. 针对这一问题, 引入成对约束, 将成对约束与轮廓系数进行结合, 提出了一种基于成对约束的SubKMeans聚类数确定算法. 改进后的轮廓系数能够更加准确的评价聚类性能, 从而实现K值确定, 实验结果证明该方法的有效性.
Abstract:With the increase of data dimension, the traditional clustering algorithm will have poor clustering performance. SubKMeans is a powerful subspace clustering algorithm, which aims to search the best subspace for K-Means algorithm and reduce the impact of high dimensions. However, the algorithm requires users to specify the number of clusters K value in advance, and sometimes it can not give accurate K value in actual use. In order to solve this problem, the pairwise constraint is introduced, which is combined with the silhouette coefficient. A SubKMeans algorithm for determining the number of clusters based on the pairwise constraint is proposed. The improved silhouette coefficient can evaluate the clustering performance more accurately, so that the K value can be determined. The experimental results proves the effectiveness of the proposed method.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省自然科学基金(2018J01794)
引用文本:
高波,何振峰.基于成对约束的SubKMeans聚类数确定算法.计算机系统应用,2021,30(1):129-134
GAO Bo,HE Zhen-Feng.SubKMeans Algorithm for Determining Number of Clusters Based on Pairwise Constraints.COMPUTER SYSTEMS APPLICATIONS,2021,30(1):129-134