本文已被:浏览 1068次 下载 2313次
Received:March 10, 2020 Revised:April 10, 2020
Received:March 10, 2020 Revised:April 10, 2020
中文摘要: 生态系统变化对我们的生产生活和健康等各个方面具有重要影响. 生态覆被数据中蕴含了生态系统变化的重要特征. 为了利用生态覆被数据研究生态系统的空间划分和时序变化, 本文基于生态数据转移矩阵, 建立了区域生态覆被变化数据模型. 然后设计了基于降维算法的生态变化可视分析系统ECOVIS, 其中改进的桑基图用以实现对生态覆被变化数据的可视化, 可交互散点图被设计用来进行交互聚类分析, 基于地图的热图用来显示选中聚类数据在空间上的分布. 本文利用该系统应用到我国生态覆被数据中, 实现对局部地区森林和城镇变化的时序可视分析, 和对整体生态空间的聚类划分分析. 分析结果证明该方法对生态系统数据具有较好的空间聚类和时序对比功能, 可以提高生态覆被数据的分析效率.
Abstract:Ecosystem changes have an important impact on our production, life and health. The ecological cover data contains important characteristics of ecosystem changes. In order to use ecological cover data to study the spatial division and time-series changes of ecosystems, we establish the regional ecological cover change data model based on ecology data transfer matrix. Then the ecological change visual analysis system ECOVIS is designed based on the dimensionality reduction algorithm, in which the improved Sankey chart is used to realize the visualization of the ecological cover change data, the Scatter plots are designed for interactive cluster analysis, and map-based heat maps are used to display the spatial distribution of selected cluster data. The system is used to analyze the data of ecological cover in China. We analyze the time sequence of forest and town changes in local areas, and to cluster and divide the whole ecological space. The analysis results show that the method has good spatial clustering and time sequence comparison functions for the data of ecological system, which can improve the analysis of ecological cover data effectively.
文章编号: 中图分类号: 文献标志码:
基金项目:中国科学院战略性先导科技专项(A类)(XDA19080102); 中国科学院青年创新促进会(2018203)
引用文本:
田东,单桂华,迟学斌.基于转移矩阵的生态变化可视分析系统.计算机系统应用,2020,29(11):66-73
TIAN Dong,SHAN Gui-Hua,CHI Xue-Bin.Visual Analysis Method of Ecosystem Changes Based on Transfer Matrix.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):66-73
田东,单桂华,迟学斌.基于转移矩阵的生态变化可视分析系统.计算机系统应用,2020,29(11):66-73
TIAN Dong,SHAN Gui-Hua,CHI Xue-Bin.Visual Analysis Method of Ecosystem Changes Based on Transfer Matrix.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):66-73