###
计算机系统应用英文版:2020,29(11):271-275
本文二维码信息
码上扫一扫!
卷积神经网络自动分类手机外壳划痕
(1.四川建筑职业技术学院 基础部, 德阳 618000;2.四川建筑职业技术学院 智能计算研究所, 德阳 618000)
Automatic Classification of Scratches on Mobile Phone Shell by CNN
(1.Department of Fundamental Subjects, Sichuan College of Architectural Technology, Deyang 618000, China;2.Institute of Intelligent Computing, Sichuan College of Architectural Technology, Deyang 618000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 894次   下载 1841
Received:April 05, 2020    Revised:April 28, 2020
中文摘要: 塑料手机外壳出厂合格检测时, 使用传统的人工辨别外观缺陷, 费时费力. 利用深度学习的卷积神经网络模型训练一个分类器, 实现手机外壳外观出现的划痕缺陷自动化检测, 可以极大的提高工作效率. 实验首先建立基本的卷积神经网络模型, 训练模型获得识别基线, 再设计修改逐步提高检测准确率. 为了解决小数据集训练中的模型过拟合和提高检测精度, 综合使用了丢弃层、数据增强技术和批量标准化, 减少参数量, 并应用迁移学习等方法. 实验结果证明, 分类器模型能有效提升准确率, 在小数据集上达到非常好的划痕缺陷识别效果.
Abstract:Plastic mobile phone shell factory quality inspection. It’s time-consuming and uses traditional manual methods to identify appearance defects. The classifier uses the convolution neural network model of deep learning to train. This classifier can automatically detect the scratch defects on the appearance of mobile phone shell, which can greatly improve the work efficiency. In the experiment, a basic convolution neural network model is established firstly, the recognition baseline is obtained by training model, and then the detection accuracy is gradually improved by design modification. In order to solve the model over fitting and improve the detection accuracy in small data set training, the dropout, data augmentation method and batch normalization are used to reduce the amount of parameters, and the transfer learning method is applied. Experimental results show that the classifier model can effectively improve the accuracy and achieve a very good scratch defect recognition effect on small data sets.
文章编号:     中图分类号:    文献标志码:
基金项目:四川德阳市科技支撑项目(2017ZZ058); 四川建院科研资助项目(2017KJ11).
引用文本:
张光建,朱婵.卷积神经网络自动分类手机外壳划痕.计算机系统应用,2020,29(11):271-275
ZHANG Guang-Jian,ZHU Chan.Automatic Classification of Scratches on Mobile Phone Shell by CNN.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):271-275