本文已被:浏览 1092次 下载 2205次
Received:March 10, 2020 Revised:April 10, 2020
Received:March 10, 2020 Revised:April 10, 2020
中文摘要: 患者病案是医生在临床诊疗中的重要依据,准确的相似病案推荐可以很好地辅助医生进行临床决策.本文提出一种新的面向真实诊疗场景的患者病案表示模型,通过异构图嵌入对诊疗过程产生的患者病案中的医疗实体及其关系进行建模,服务于更好的病案推荐.基于某三甲医院乳腺诊疗病案数据表明该模型相较于现有的表示方法推荐准确率提升2%.
Abstract:Medical records of patients are basic to the clinical diagnoses and treatments. Accurate recommendation of similar medical records can assist doctors in clinical decision making. In this study, we propose a new embedding model of medical records in real diagnosis and treatment scenarios. To recommend better medical records, we model the medical entities and their relationships in the medical records by heterogeneous graph embeddings. We conduct experiments on medical records of patients diagnosed with breast diseases from a Grade III-A hospital. The accuracy of the proposed model is improved by 2% compared with the existing model.
keywords: representation learning graph embedding recommendation of similar medical records auxiliary diagnosis and treatment clinical text
文章编号: 中图分类号: 文献标志码:
基金项目:国家重点研发计划(2019YFE0190500);上海市科学技术发展基金(18511102703)
引用文本:
王亦凡,李继云.基于异构图嵌入学习的相似病案推荐.计算机系统应用,2020,29(10):228-234
WANG Yi-Fan,LI Ji-Yun.Similar Medical Records Recommendation Based on Heterogeneous Graph Embedding Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(10):228-234
王亦凡,李继云.基于异构图嵌入学习的相似病案推荐.计算机系统应用,2020,29(10):228-234
WANG Yi-Fan,LI Ji-Yun.Similar Medical Records Recommendation Based on Heterogeneous Graph Embedding Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(10):228-234