###
计算机系统应用英文版:2020,29(9):32-39
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
空间位置的关联分析及其向量化表示方法
(1.中国科学院 计算机网络信息中心, 北京 100190;2.中国科学院大学, 北京 100049;3.国家广播电视总局广播电视科学研究院, 北京 100866;4.北京市科学技术研究院, 北京 100089;5.北京市新技术应用研究所, 北京 100094)
Correlation Analysis and Vectorization Method for Spatial Position
(1.Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Academy of Broadcasting Science, National Radio and Television Administration, Beijing 100866, China;4.Beijing Academy of Science and Technology, Beijing 100089, China;5.Beijing Institute of New Technology Application, Beijing 100094, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1557次   下载 4089
Received:February 27, 2020    Revised:March 17, 2020
中文摘要: 理解地理空间位置的空间相关性,对于地理信息检索、推荐系统,城市交通管理,居民出行模式探究等应用研究具有重要支撑作用.为更具体表义空间位置及其关联关系,本文基于多种居民出行轨迹数据,提出一种基于深度学习的空间位置向量化表示方法,而后通过空间位置向量的向量运算,可计算得到空间位置的关联程度.首先将长、短距离出行轨迹进行匹配连接,构建大规模交通网络,覆盖多种出行模式,得到对不同位置间空间关联信息的完整识别.然后基于图神经网络模型,本文提出融合位置特征与轨迹信息的空间向量化表示方法,并优化其训练学习中节点采样方法,提高空间向量的表达能力.最后以北京市共享单车轨迹数据与公共交通路网数据进行实证分析,实验结果表明基于本文提出方法生成的空间向量在空间位置的关联分析、聚类分析中相比DeepMove等已有方法拥有更好的效果.
Abstract:Understanding the spatial correlation of places plays an important role in geographic information retrieval and recommendation systems, urban traffic management, and resident travel pattern exploration. In order to represent the places and their spatial relationships specifically, we propose a deep learning-based vectorization method for places. The correlation between places can be calculated by the place vectors. Firstly, the trajectories of long-distance and short-distance are matched and connected to build a large-scale traffic network, which could cover multiple travel modes and obtain a complete cognition of spatial relations. Then we propose a spatial vectorization method which is based on graph neural network and combines place features and trajectory information. Besides, we improve the representation ability of latent representations for places by optimizing a node sampling method. Finally, the empirical analysis is performed on the shared bicycle track data and public traffic data in Beijing. The result demonstrates that the proposed method outperforms the existing methods such as DeepMove on place correlation analysis and cluster analysis.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(41971366,91846301);国家重点研发计划(2018YFC0809700);北京市自然科学基金(9172023,9194027)
引用文本:
张舒,郭旦怀,周纯葆,李薰春,靳薇.空间位置的关联分析及其向量化表示方法.计算机系统应用,2020,29(9):32-39
ZHANG Shu,GUO Dan-Huai,ZHOU Chun-Bao,LI Xun-Chun,JIN Wei.Correlation Analysis and Vectorization Method for Spatial Position.COMPUTER SYSTEMS APPLICATIONS,2020,29(9):32-39