本文已被:浏览 992次 下载 2374次
Received:February 09, 2020 Revised:March 03, 2020
Received:February 09, 2020 Revised:March 03, 2020
中文摘要: 在互联网金融机构有很多信贷业务, 部分新开展的业务由于客户数据较少, 无法建立有效的信用评分模型. 本文研究将迁移学习思想应用到该问题中, 利用已有其他业务的客户数据帮助新开展的业务建立有效的信用评分模型. 本文提出一种联合Triplet-Loss表征学习和领域适配的深度学习方法对已有业务数据进行重新编码, 并将重新编码后所得的知识迁移到新开展业务的模型中, 最后使用XGBoost做为分类器. 针对上述问题, 本文提出的模型相对传统机器学习方法在效果上有一定提升, 在一定程度上解决了该问题.
Abstract:Internet financial institutions have many credit businesses, and some of the newly launched businesses cannot establish an effective credit scoring model due to the lack of customer data. This work studies the application of transfer learning ideas to this problem and uses existing customer data from other businesses to help new businesses build effective credit scoring models. This study proposes a deep learning method based on the combination of Triplet-Loss and domain adaptation to re-encode existing business data, and transfers the knowledge obtained after re-encoding to the model of the new business, and finally uses XGBoost as the classifier. In view of the above problems, the model proposed in this study has improved the effect compared to traditional machine learning methods, and solved the problem to a certain extent.
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(71671178, 91546201); 广东省科技厅大数据专项(2016B010127004); 中国科学院大学优秀青年教师科研能力提升项目
引用文本:
魏千程,吴开超,刘莹.基于迁移学习的信用评分预测.计算机系统应用,2020,29(11):134-138
WEI Qian-Cheng,WU Kai-Chao,LIU Ying.Prediction of Credit Score Based on Transfer Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):134-138
魏千程,吴开超,刘莹.基于迁移学习的信用评分预测.计算机系统应用,2020,29(11):134-138
WEI Qian-Cheng,WU Kai-Chao,LIU Ying.Prediction of Credit Score Based on Transfer Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(11):134-138