###
计算机系统应用英文版:2020,29(8):24-30
本文二维码信息
码上扫一扫!
基于动态加权组合模型的ATM现金预测方法
(中国工商银行股份有限公司 软件开发中心, 珠海 519000)
ATM Cash Forecasting Method Based on Dynamic Weighted Combination Model
(Software Development Center, ICBC, Zhuhai 519000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1286次   下载 2840
Received:January 20, 2020    Revised:February 25, 2020
中文摘要: 本文提出了一种基于动态加权组合模型的智能现金预测方法, 可以对银行ATM设备的日常现金用量进行精准预测, 为日常现金调拨管理提供决策依据. 与以往使用的单算法预测不同, 本文对银行业务、交易流水与设备等特性进行分析, 据此组合4种单一机器学习模型, 提出并实现基于动态加权组合模型的智能算法. 该算法可以为银行现金用量管理提供更智能、更精准、更高效的预测手段, 有效压降现金库存总量与回钞率, 提升现金运用率. 此方法已在广东、重庆、江西、山西、北京等地区使用, 并取得良好效果.
中文关键词: 现金预测  机器学习  动态加权法
Abstract:A wise cash forecasting method based on a dynamic weighted combination model is proposed in this study, to precisely predict the daily cash consumption of ATM equipments so as to make a better decision for daily cash transfer management. Different from single-algorithm prediction used in the past, with analyzing characteristics of banking business, transaction flow, and equipment, etc., an intelligent algorithm based on a dynamic weighted combination model that combining 4 single machine learning models, is proposed and implemented in this study. This algorithm provides a more intelligent, more precise, and more efficient forecasting method for the management of bank cash consumption, effectively reduces the total amount of cash inventory and the rate of cash return, and improves the utilization rate of cash. This method has been used in Guangdong, Chongqing, Jiangxi, Shanxi, Beijing, and other areas with sound results.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
杜姗,蔡为彬.基于动态加权组合模型的ATM现金预测方法.计算机系统应用,2020,29(8):24-30
DU Shan,CAI Wei-Bin.ATM Cash Forecasting Method Based on Dynamic Weighted Combination Model.COMPUTER SYSTEMS APPLICATIONS,2020,29(8):24-30