###
计算机系统应用英文版:2020,29(7):217-221
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
K12学习平台个性化学习资源推荐
(苏州百智通信息技术有限公司, 苏州 215000)
Recommendation of Personalized Learning Resources on K12 Learning Platform
(Suzhou Baizhitong Information Technology Co. Ltd., Suzhou 215000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1577次   下载 5084
Received:November 04, 2019    Revised:December 09, 2019
中文摘要: 随着在线学习平台的普及, 产生了大量学习行为数据, 如何利用大数据挖掘技术分析在线学习行为, 解决学习者经常面临的“资源过载”和“学习迷航”问题, 更好地实现教学决策、学习过程优化和个性化学习方法推荐等, 已经成为研究重点. 文章基于苏州线上教育中心的学习行为数据, 研究了常用的推荐系统模型, 结合该平台的数据特点, 提出了一种基于知识图谱的协同过滤推荐算法, 利用该算法, 平台推荐的资源准确率超过了90%, 有效解决了学生“学习迷航”的问题.
Abstract:With the popularity of online learning platform, a large number of learning behavior data are generated. How to use big data mining technology to analyze online learning behavior, to solve the problem that learners often face “resource overload” and “learning confusion” , better implementation of teaching decision-making, learning process optimization, personalized learning method recommendation, etc., has become a research focus. Based on the learning behavior data of Suzhou online education center, this work studies the common recommendation system model. Combined with the data characteristics of the platform, a collaborative filtering recommendation algorithm based on knowledge map is proposed. With this algorithm, the accuracy of the platform’s recommended resources is more than 90%, which effectively solves the problem of “learning lost” for students.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
徐亚军,郭俭.K12学习平台个性化学习资源推荐.计算机系统应用,2020,29(7):217-221
XU Ya-Jun,GUO Jian.Recommendation of Personalized Learning Resources on K12 Learning Platform.COMPUTER SYSTEMS APPLICATIONS,2020,29(7):217-221