###
计算机系统应用英文版:2020,29(7):180-185
本文二维码信息
码上扫一扫!
基于深度学习高分辨率遥感影像语义分割
(浙江理工大学 信息学院, 杭州 310018)
Semantic Segmentation of High Resolution Remote Sensing Image Based on Deep Learning
(School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1344次   下载 3544
Received:December 01, 2019    Revised:January 03, 2020
中文摘要: 高分辨率遥感影像含有丰富的地理信息. 目前基于传统神经网络的语义分割模型不能够对遥感影像中小物体进行更高维度的特征提取, 导致分割错误率较高. 本文提出一种基于编码与解码结构特征连接的方法, 对DeconvNet网络模型进行改进. 模型在编码时, 通过记录池化索引的位置并应用于上池化中, 能够保留空间结构信息; 在解码时, 利用编码与解码对应特征层连接的方式使模型有效地进行特征提取. 在模型训练时, 使用设计的预训练模型, 可以有效地扩充数据, 来解决模型的过拟合问题. 实验结果表明, 在对优化器、学习率和损失函数适当调整的基础上, 使用扩充后的数据集进行训练, 对遥感影像验证集的分割精确度达到95%左右, 相对于DeconvNet和UNet网络模型分割精确度有显著提升.
Abstract:High-resolution remote sensing images contains rich geographic information. At present, the semantic segmentation model based on the traditional neural network cannot extract the features of small and medium-sized objects in remote sensing images, resulting in high segmentation error rate. This study proposes a method based on the connection of encoder and decoder structure features to improve the DeconvNet network model. The model can retain the spatial structure information by recording the location of the pool index and applying it to the upper pool when being encoded. During decoding, the model can effectively extract features by connecting the corresponding feature layer of encoder and decoder. During model training, the pre-training model designed can effectively expand the data to solve the problem of model over-fitting. The experimental results show that, based on the proper adjustment of optimizer, learning rate and loss function, the accuracy of remote sensing images semantic segmentation in the validation database is about 95% by using the extended dataset for training, which is significantly improved compared with the DeconvNet and UNet network models.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
尚群锋,沈炜,帅世渊.基于深度学习高分辨率遥感影像语义分割.计算机系统应用,2020,29(7):180-185
SHANG Qun-Feng,SHEN Wei,SHUAI Shi-Yuan.Semantic Segmentation of High Resolution Remote Sensing Image Based on Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2020,29(7):180-185