本文已被:浏览 1249次 下载 2125次
Received:October 24, 2019 Revised:November 20, 2019
Received:October 24, 2019 Revised:November 20, 2019
中文摘要: 高校毕业生质量直接关系到高校的社会声誉与发展. 为了准确的评价高校的毕业生质量, 本文基于某高校计算机类毕业生的历史数据, 采用一种改进的随机森林算法构建人才培养质量评价模型. 在训练分类器之前, 利用RF Ranking方法来度量特征重要性并选取75%的特征进行降维处理, 以此改善训练样本的非平衡现象; 通过对基分类器的训练, 测试各个分类器的性能, 依据性能的强弱对单个分类器作加权处理, 以此降低性能较差的分类器对结果的影响. 实践结果表明, 该算法提高了人才培养质量评价的准确率和精确度, 可以在高校人才培养方面起到指导作用.
Abstract:The quality of college graduates is directly related to the social reputation and development of colleges and universities. In order to accurately evaluate the quality of college graduates, based on the historical data of computer graduates in a university, this study uses an improved random forest algorithm to build a talent training quality assessment model. Before training classifiers, RF ranking method is used to measure the importance of features and select 75% of the features for dimension reduction, so as to improve the unbalanced phenomenon of training samples; through the training of base classifiers, the performance of each classifier is tested, and a single classifier is weighted according to the strength of performance, so as to reduce the impact of poor performance classifiers on the results. The practical results show that the algorithm improves the accuracy and precision of the quality assessment of personnel training, and can play a guiding role in personnel training in colleges and universities.
文章编号: 中图分类号: 文献标志码:
基金项目:山东省重点研发计划(2017GGX10107)
引用文本:
毕瑶家,刘国柱,王华东,孙驰,付兆殊.改进随机森林算法在人才培养质量评价中的应用.计算机系统应用,2020,29(7):212-216
BI Yao-Jia,LIU Guo-Zhu,WANG Hua-Dong,SUN Chi,FU Zhao-Shu.Application of Improved RF Algorithm in Quality Assessment of Personnel Training.COMPUTER SYSTEMS APPLICATIONS,2020,29(7):212-216
毕瑶家,刘国柱,王华东,孙驰,付兆殊.改进随机森林算法在人才培养质量评价中的应用.计算机系统应用,2020,29(7):212-216
BI Yao-Jia,LIU Guo-Zhu,WANG Hua-Dong,SUN Chi,FU Zhao-Shu.Application of Improved RF Algorithm in Quality Assessment of Personnel Training.COMPUTER SYSTEMS APPLICATIONS,2020,29(7):212-216