本文已被:浏览 1721次 下载 1782次
Received:September 01, 2019 Revised:September 23, 2019
Received:September 01, 2019 Revised:September 23, 2019
中文摘要: 图像超分辨率重建在安防系统,小目标检测以及医学图像等有着广泛的应用.本文提出一种双路径反馈网络来提高图像超分辨重建的性能.在双路径网络中,一条路径采用深度残差稠密网络学习重建图像的高频信息,另一条路径直接在输入图像上通过亚像素卷积层上采样到所需分辨率来给重建图像提供低频信息,然后将两条路径得到的特征图进行融合来自适应的选取所需要的信息,接着通过一个反馈型卷积层进行局部循环训练来获得大的感受野.通过在数据集DIV2K上训练,实验结果表明所提方法的有效性和优越性.
Abstract:Image super-resolution reconstruction has a wide range of applications, such as security systems, small object detection, and medical imaging. This study proposes a dual stream feedback network to improve the performance of image super-resolution reconstruction. In the dual-stream network, one path adapts a deep residual dense network to learn the high-frequency information of the reconstructed image, and the other path directly samples the input image to the desired resolution through a sub-pixel convolution layer. Then, the feature maps obtained from the two paths are fused to adaptively selecting the required information. Finally, using a feedback convolutional layer for locally loop training to obtain a large receptive field. By training on the dataset DIV2K, the experimental results show the effectiveness and superiority of the proposed method.
keywords: super-resolution reconstruction dual-stream feedback network residual dense network feature fusion convolution layer
文章编号: 中图分类号: 文献标志码:
基金项目:中央引导地方科技发展专项(2017L3009)
引用文本:
陶状,廖晓东,沈江红.双路径反馈网络的图像超分辨重建算法.计算机系统应用,2020,29(4):181-186
TAO Zhuang,LIAO Xiao-Dong,SHEN Jiang-Hong.Dual Stream Feedback Network for Image Super-Resolution Reconstruction.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):181-186
陶状,廖晓东,沈江红.双路径反馈网络的图像超分辨重建算法.计算机系统应用,2020,29(4):181-186
TAO Zhuang,LIAO Xiao-Dong,SHEN Jiang-Hong.Dual Stream Feedback Network for Image Super-Resolution Reconstruction.COMPUTER SYSTEMS APPLICATIONS,2020,29(4):181-186