###
计算机系统应用英文版:2020,29(3):29-38
本文二维码信息
码上扫一扫!
藏语语音识别研究进展和展望
(1.西藏大学 信息科学技术学院, 拉萨 850000;2.北京理工大学珠海学院 计算机学院, 珠海 519088)
Progress and Prospects of Tibetan Speech Recognition Research
(1.School of Information Science and Technology, Tibet University, Lhasa 850000, China;2.School of Computer Technology, Beijing Institute of Technology, Zhuhai, Zhuhai 519088, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2313次   下载 5373
Received:July 27, 2019    Revised:September 02, 2019
中文摘要: 随着英汉语音识别技术的不断发展,对少数民族语言语音识别技术的研究也紧跟其后并取得了一定的成果.藏族人民是中华民族大家庭中不可或缺的一员,藏语语音识别技术研究是语音识别技术研究中不可缺少的重要部分.文章首先对国内藏语言语音识别的研究历程及研究改进之处进行了梳理,其次从藏语言本身的文字特点以及发音特点和要素出发详细介绍了藏语语音识别研究中使用到的基于模板匹配、统计概率模型以及人工神经网络3种方法,并对3种方法各自的特点和适用范围进行了总结归纳,最后从藏语言语音识别研究进展和各识别方法的自身特点出发探讨了语音识别研究中存在的难点问题,并展望了其未来发展的方向.
Abstract:With the continuous development of English and Chinese speech recognition technology, the research on minority language speech recognition technology has followed closely and achieved certain results. The Tibetan people are an indispensable member of the Chinese nation's family. The study of Tibetan speech recognition technology is an indispensable part of the research of speech recognition technology. Firstly, the paper presents the research process and research improvement of Tibetan speech recognition in China. Secondly, it introduces the template-based matching and statistical probability model and artificial neural network used in Tibetan speech recognition research from the characteristics of Tibetan language itself and its pronunciation features and elements, then summarizes the characteristics and application scope of the three methods. Finally, it discusses the research progress of Tibetan speech recognition and the characteristics of each recognition method, discusses the difficult problem and the direction of its future development.
文章编号:     中图分类号:    文献标志码:
基金项目:西藏自治区自然科学基金(XZ2019ZRG-09)
引用文本:
王福钊,周雁.藏语语音识别研究进展和展望.计算机系统应用,2020,29(3):29-38
WANG Fu-Zhao,ZHOU Yan.Progress and Prospects of Tibetan Speech Recognition Research.COMPUTER SYSTEMS APPLICATIONS,2020,29(3):29-38