本文已被:浏览 1283次 下载 1960次
Received:May 28, 2019 Revised:July 10, 2019
Received:May 28, 2019 Revised:July 10, 2019
中文摘要: 在传统分段式数据流聚类算法中,在线部分中的微簇阈值半径T取值不精确以及离线部分对微聚类的处理相对简单,导致了聚类质量不高.针对这一缺点,在现有动态滑动窗口模型基础上,提出了一种针对离线部分处理的基于人工蜂群优化的数据流聚类算法.该算法包括两部分:(1)在线部分根据数据在窗口内停留的时间长短来动态调整窗口的大小和改进微簇阈值半径T的取值,逐步得到微簇集.(2)离线部分利用改进的蜂群算法不断动态调整来求出最优聚类结果.实验结果证明,本文算法不但有较高的聚类质量,而且有较好的延展性和稳定性.
Abstract:In the traditional segmented data stream clustering algorithm, the inaccuracy of micro-cluster threshold radius T in the online part as well as the oversimplifying of the dealing process with the micro-cluster by the offline part leads to a low clustering quality. In order to break through such limitation, a data stream clustering algorithm on the basis of artificial bee colony optimization for offline part processing is proposed based on the existing dynamic sliding window model. This algorithm consists of two parts:(1) The online part dynamically adjusts the size of the window and improves the value of the micro-cluster threshold radius T according to the length of time that the data stays in the window so as to get micro clustering step by step. (2) The offline part uses the improved bee colony algorithm to continuously adjust dynamically to find the optimal clustering result. The experimental results show that this algorithm not only bears a high clustering quality, but also has fairly good ductility and stability.
keywords: data stream clustering dynamic sliding window artificial bee colony algorithm micro cluster threshold radius
文章编号: 中图分类号: 文献标志码:
基金项目:河北省高等学校科学技术研究项目(ZD2015087);邯郸市科学技术研究与发展计划(1721203049-1)
引用文本:
贾东立,申飞,崔新宇.基于人工蜂群优化的数据流聚类算法.计算机系统应用,2020,29(2):145-150
JIA Dong-Li,SHEN Fei,CUI Xin-Yu.Data Stream Clustering Algorithm Based on Artificial Bee Colony Optimization.COMPUTER SYSTEMS APPLICATIONS,2020,29(2):145-150
贾东立,申飞,崔新宇.基于人工蜂群优化的数据流聚类算法.计算机系统应用,2020,29(2):145-150
JIA Dong-Li,SHEN Fei,CUI Xin-Yu.Data Stream Clustering Algorithm Based on Artificial Bee Colony Optimization.COMPUTER SYSTEMS APPLICATIONS,2020,29(2):145-150