###
计算机系统应用英文版:2019,28(11):218-223
本文二维码信息
码上扫一扫!
基于双神经网络的RFID室内定位方法
陈龙鹏1,2,3, 叶宁1,2,3,4, 王汝传1,2,3,4
(1.南京邮电大学 计算机学院, 南京 210023;2.南京邮电大学 软件学院, 南京 210023;3.南京邮电大学 网络空间安全学院, 南京 210023;4.南京邮电大学 江苏省无线传感网高技术重点实验室, 南京 210023)
Indoor Position Method for RFID System Based on Dual Neural Network
CHEN Long-Peng1,2,3, YE Ning1,2,3,4, WANG Ru-Chuan1,2,3,4
(1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.School of Software, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;3.School of Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;4.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1437次   下载 2305
Received:April 09, 2019    Revised:May 08, 2019
中文摘要: 在室内定位中,传统的RFID定位方法由于方法简单,无法随着室内环境的变化准确估计当前的路径损耗系数,存在受环境影响大,定位精度不高,实时性差等缺点.为了解决以上问题,提出一种基于双神经网络模型的室内定位算法,建立BP网络和DNN网络的双神经网络模型,将采集到的RSSI信号值预处理后输入到BP网络模型中,输出路径损耗系数n,再将接收信号强度值RSSI和通过BP模型得到的路径损耗系数n作为输入,输入到DNN网络模型中,得到待测标签的精确定位坐标.实验表明,与传统的基于RSSI和基于ANN模型的室内定位算法相比,本算法有效提高了定位精度和定位实时性.
Abstract:In the indoor positioning, the traditional RFID positioning method cannot accurately estimate the current path loss coefficient with the change of indoor environment due to its simple method. It has disadvantages such as large environmental impact, low positioning accuracy, and poor real-time performance. In order to solve the above problems, this study puts forward a kind of indoor location algorithm based on dual neural network model, and establishes the BP network and the network within DNN dual neural network model. Then, it preprocesses the collected RSSI signal and inputs the preprocessed signal value to BP network model, outputs path loss coefficient n, and then received signal strength value RSSI and through the BP model to get the path loss coefficient of n as input, input to the network within DNN model, and get the precise positioning of the labels under test coordinates. Experiments show that compared with the traditional indoor positioning algorithm based on RSSI and ANN model, this algorithm effectively improves the positioning accuracy and real-time performance.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61572260,61373017,61572261,61672297,61872194);江苏省优秀青年科学基金学者(BK20160089)
引用文本:
陈龙鹏,叶宁,王汝传.基于双神经网络的RFID室内定位方法.计算机系统应用,2019,28(11):218-223
CHEN Long-Peng,YE Ning,WANG Ru-Chuan.Indoor Position Method for RFID System Based on Dual Neural Network.COMPUTER SYSTEMS APPLICATIONS,2019,28(11):218-223