###
计算机系统应用英文版:2019,28(10):53-60
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
面向消化内科辅助诊疗的生成式对话系统
(中国科学技术大学 计算机科学与技术学院, 合肥 230022)
Generating Auxiliary Diagnosis Dialogue System for Gastroenterology
(School of Computer Science and Technology, University of Science and Technology of China, HeFei 230022, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1213次   下载 2086
Received:March 27, 2019    Revised:April 26, 2019
中文摘要: 社会的高速发展带给群众的压力越来越大,由于工作压力和自身问题,越来越多的人饮食不规律且不健康,导致患有消化系统疾病的人群日益扩大,而在身体刚出现异样时,大部分人会首先选择在网上寻找信息帮助,由于传统搜索引擎的局限性,过程耗时,且因为消化内科疾病的多样性,用户很难准确获取相关信息.针对这一问题,考虑到对话系统作为一种较为高级的信息检索系统,能够根据用户的输入及时返回相关有效信息,本文探索了一种适用于消化科领域的生成式对话系统,通过支持向量机分类与主动学习相结合,在多个医学网站获取消化内科的专业问诊对话语料,人工与统计相结合构建消化内科疾病、药品和症状专业词典,改善传统分词工具在消化内科领域分词效果,在提高分词效果的基础上,使用Encoder与Decoder多层结构和门控循环单元GRU结合的方式,加入注意力机制,提出结合颠倒输入、键值对向量和Word2Vec向量的模型加强训练法,从而获得最终的消化内科生成式问答系统.实验结果表明,分词的准确率比传统方式高,且得出的对话模型能够有效的生成与问句相关的答句,提高对话系统的回答准确率.
中文关键词: 消化内科  分词  主动学习  词向量  seq2seq  GRU  注意力机制
Abstract:The rapid development of society brings more and more pressure to people. Due to work pressure and self-problems, more and more people are eating three meals irregularly and unhealthily, which leads to the growing population of people suffering from digestive diseases. When the body just appears abnormal, most people first will choose to find information on the Internet. Due to the limitations of traditional search engines, the process is time consuming, and because of the diversity of diseases, it is difficult for users to accurately obtain relevant information. In view of this problem, considering that the dialogue system is a more advanced information retrieval system. This study explores a generative dialogue system suitable for the field of gastroentology, using support vector machine and active learning to obtain professional consultation dialogue corpus of gastroenterology on multiple medical websites. Labor and statistics are combined to build a professional dictionary of diseases, drugs, and symptoms of digestive diseases, word segmentation is improved in the medical field. On this basis, multi-Encoder and multi-Decoder structure is combined with gated loop unit GRU, the attention mechanism is also added, then the model strengthening training method is proposed, which combines reverse input and key-value pair vector and Word2Vec vector, to obtain the final model. The experimental results show that the word segmentation result is much higher than the traditional method, and the resulting dialogue model can effectively generate the sentence related to the question, which can improve the answer accuracy of the dialogue system.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
程梦卓,董兰芳.面向消化内科辅助诊疗的生成式对话系统.计算机系统应用,2019,28(10):53-60
CHENG Meng-Zhuo,DONG Lan-Fang.Generating Auxiliary Diagnosis Dialogue System for Gastroenterology.COMPUTER SYSTEMS APPLICATIONS,2019,28(10):53-60