本文已被:浏览 1499次 下载 2225次
Received:March 20, 2019 Revised:April 17, 2019
Received:March 20, 2019 Revised:April 17, 2019
中文摘要: 中文文本校对是中文自然语言处理方面的关键任务之一,人工校对方式难以满足日常工作的数据量需求,而基于统计的文本校对方法不能灵活的处理语义方面的错误.针对上述问题,提出了一种基于神经网络与注意力机制的中文文本校对方法.利用双向门控循环神经网络层获取文本信息并进行特征提取,并引入注意力机制层增强词间语义逻辑关系的捕获能力.在基于Keras深度学习框架下对模型进行实现,实验结果表明,该方法能够对含语义错误的文本进行校对.
中文关键词: 中文文本校对 注意力机制 双向门控循环神经网络 端到端序列模型
Abstract:Chinese text proofreading is one of the key tasks in Chinese natural language processing, and manual proofreading is difficult to meet the data volume requirement of daily work, and the text proofreading method based on statistics can not deal with semantic errors flexibly. Aiming at the above problems, a Chinese text proofreading method based on neural network and attention mechanism is proposed. The bidirectional Gated Recurrent Unity neural network layer is used to obtain text information and feature extraction, and the ability of attention mechanism layer to enhance the semantic logic relation between words is introduced. The model is implemented under the framework of deep learning based on Keras. Experimental results show that this method can proofread text with semantic errors.
keywords: proofreading of Chinese text attention mechanism bidirectional Gated Recurrent Unity (GRU) end-to-end sequence model
文章编号: 中图分类号: 文献标志码:
基金项目:山西省重点研发计划重点项目(201703D111011)
引用文本:
郝亚男,乔钢柱,谭瑛.基于神经网络与注意力机制的中文文本校对方法.计算机系统应用,2019,28(10):190-195
HAO Ya-Nan,QIAO Gang-Zhu,TAN Ying.Chinese Text Proofreading Method Based on Neural Network and Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2019,28(10):190-195
郝亚男,乔钢柱,谭瑛.基于神经网络与注意力机制的中文文本校对方法.计算机系统应用,2019,28(10):190-195
HAO Ya-Nan,QIAO Gang-Zhu,TAN Ying.Chinese Text Proofreading Method Based on Neural Network and Attention Mechanism.COMPUTER SYSTEMS APPLICATIONS,2019,28(10):190-195