###
计算机系统应用英文版:2019,28(10):1-7
本文二维码信息
码上扫一扫!
基于深层声学特征的端到端语音分离
(1.复旦大学 计算机科学技术学院, 上海 201203;2.盲信号处理国家级重点实验室, 上海 200434;3.中国音乐学院 音乐科技系, 北京 100101)
End-to-End Speech Separation Based on Deep Acoustic Feature
(1.School of Computer Science, FudanUniversity, Shanghai 201203, China;2.National Key Laboratory of Blind Signal Processing, Shanghai 200434, China;3.Department of Music Technology, China Conservatory of Music, Beijing 100101, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1581次   下载 3010
Received:March 12, 2019    Revised:April 04, 2019
中文摘要: 提出基于深层声学特征的端到端单声道语音分离算法,传统声学特征提取方法需要经过傅里叶变换、离散余弦变换等操作,会造成语音能量损失以及长时间延迟.为了改善这些问题,提出了以语音信号的原始波形作为深度神经网络的输入,通过网络模型来学习语音信号的更深层次的声学特征,实现端到端的语音分离.客观评价实验说明,本文提出的分离算法不仅有效地提升了语音分离的性能,也减少了语音分离算法的时间延迟.
Abstract:An end-to-end single channel speech separation algorithm based on deep acoustic feature is proposed. The traditional acoustic feature extraction methods require the Fourier transform, discrete cosine transform and other operations. This will cause speech energy loss and long latency. In order to improve these problems, the original waveform of the speech signal is used as an input to a deep neural network, deeper acoustic features of the speech signal are learned through a network model. Objective evaluation shows that the proposed algorithm not only improves the performance of speech separation effectively, but also reduces the time delay of speech separation algorithm.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61671156);北京市社会科学基金(17YTC028)
引用文本:
李娟娟,王丹,李子晋.基于深层声学特征的端到端语音分离.计算机系统应用,2019,28(10):1-7
LI Juan-Juan,WANG Dan,LI Zi-Jin.End-to-End Speech Separation Based on Deep Acoustic Feature.COMPUTER SYSTEMS APPLICATIONS,2019,28(10):1-7