本文已被:浏览 1344次 下载 2513次
Received:December 11, 2018 Revised:December 29, 2018
Received:December 11, 2018 Revised:December 29, 2018
中文摘要: 遗传算法经常被应用于工业生产中的最优化问题当中,但是在面对非线性、多极值、多变量的问题时容易在早期寻优过程中陷入局部最优解范围.本文通过对传统的遗传算法添加灾变操作,减少了遗传算法常见的“早熟”现象,配合灾变操作的迭代次数的变化设置了遗传操作自适应变化,增强了算法后期的寻优能力.该算法以河北某钢铁企业的实际生产数据进行检验,实验结果表明该算法能在保证烧结矿性能质量的前提下,有效的降低原料成本,有效降低早熟现象的发生,提高了算法的整体搜索能力,在工业生产当中的最优化问题当中可以发挥很好的效果.
Abstract:Genetic algorithm is often applied to optimization problems in industrial production, but facing non-linear, multi-extreme, and multi-variable problems, it is easy to fall into the local optimal range in the early optimization process. By adding catastrophe operation to the traditional genetic algorithm, this study reduces the common “premature” phenomenon of genetic algorithm, and sets the adaptive change of genetic operation with the change of iteration times of catastrophe operation, which enhances the optimization ability of the later period of the algorithm. The algorithm is tested with the actual production data of a steel enterprise in Hebei Province. The experimental results show that the algorithm can effectively reduce the cost of raw materials, reduce the occurrence of premature phenomena, improve the overall search ability of the algorithm, and can play a significant role in the optimization of industrial production under the premise of guaranteeing the performance and quality of sinter.
文章编号: 中图分类号: 文献标志码:
基金项目:河北省科技计划项目(17210310D)
引用文本:
王策,董兆伟,孙立辉,姜军强,史振杰,武晓婧.新型灾变自适应遗传算法及其应用.计算机系统应用,2019,28(9):278-283
WANG Ce,DONG Zhao-Wei,SUN Li-Hui,JIANG Jun-Qiang,SHI Zhen-Jie,WU Xiao-Jing.New Catastrophe Adaptive Genetic Algorithm and Application.COMPUTER SYSTEMS APPLICATIONS,2019,28(9):278-283
王策,董兆伟,孙立辉,姜军强,史振杰,武晓婧.新型灾变自适应遗传算法及其应用.计算机系统应用,2019,28(9):278-283
WANG Ce,DONG Zhao-Wei,SUN Li-Hui,JIANG Jun-Qiang,SHI Zhen-Jie,WU Xiao-Jing.New Catastrophe Adaptive Genetic Algorithm and Application.COMPUTER SYSTEMS APPLICATIONS,2019,28(9):278-283