本文已被:浏览 1615次 下载 2197次
Received:December 04, 2018 Revised:December 26, 2018
Received:December 04, 2018 Revised:December 26, 2018
中文摘要: 当今时代,科学技术高速发展,涌现出一批新技术,数据挖掘、机器学习等新科学领域被深入研究,众多智能算法逐渐出现,同时被应用到了不同的领域中.本文构建了一种基于BP (Back Propagation)神经网络和SVR (Support Vector Regression)支持向量回归机的组合模型.依托于农产品价格数据进行实例验证分析,结果表明相对于单一的预测模型,BP-SVR-BP组合模型在预测精度上有了很大的提升,拟合效果更加逼近真实数据曲线,能够客观真实的反应农产品物价变化规律.
Abstract:Nowadays, with the rapid development of science and technology, a number of new technologies have emerged. New scientific fields such as data mining and machine learning have been deeply studied. Many intelligent algorithms have emerged and applied to different fields. This paper constructs a combined model based on BP (Back Propagation) neural network and SVR (Support Vector Regression). Based on the agricultural product price data, the example verification analysis shows that compared with the single prediction model, the BP-SVR-BP prediction model has greatly improved the prediction accuracy. The fitting effect is closer to the real data curve, which can objectively and truly reflect the law of agricultural product price changes.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
苏照军,郭锐锋,高岑,王美吉,李冬梅.基于组合模型的农产品物价预测算法.计算机系统应用,2019,28(5):185-189
SU Zhao-Jun,GUO Rui-Feng,GAO Cen,WANG Mei-Ji,LI Dong-Mei.Agricultural Product Price Forecasting Algorithm Based on Combination Model.COMPUTER SYSTEMS APPLICATIONS,2019,28(5):185-189
苏照军,郭锐锋,高岑,王美吉,李冬梅.基于组合模型的农产品物价预测算法.计算机系统应用,2019,28(5):185-189
SU Zhao-Jun,GUO Rui-Feng,GAO Cen,WANG Mei-Ji,LI Dong-Mei.Agricultural Product Price Forecasting Algorithm Based on Combination Model.COMPUTER SYSTEMS APPLICATIONS,2019,28(5):185-189