###
计算机系统应用英文版:2019,28(4):170-175
本文二维码信息
码上扫一扫!
基于Faster R-CNN的设备故障检测与识别
(1.中国科学院大学, 北京 100049;2.
中国科学院 沈阳计算技术研究所, 沈阳 110168)
Equipment Fault Detection and Recognition Based on Faster R-CNN
(1.University of Chinese Academy of Sciences, Beijing 100049, China;2.
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1859次   下载 2738
Received:October 31, 2018    Revised:November 19, 2018
中文摘要: 现阶段环境检测设备故障频发,需要自动判断该设备是否发生故障,虽然在设备机房中该设备没有触发设备报警装备,但是监测数据仍然超出了正常工作范围,导致检测数据出错.为了解决这一类设备故障问题,提出了基于Faster R-CNN的故障检测与识别的方法,通过对人工标注的图片数据进行卷积特征训练,得到了用于该场景下开关、指示灯、数字仪器三种设备的检测识别模型.实验表明,Faster R-CNN算法对不同拍摄角度、有遮挡物、不同光照条件下的这三种设备的故障检测都能得到理想的效果,也能基本达到实时监测的速率.
Abstract:At the present stage, the environmental testing equipment failures occur frequently and it is necessary to automatically judge whether the equipment fails. Although the equipment does not trigger alarm equipment in the equipment room, the monitoring data is beyond the normal working range. In order to solve this kind of equipment fault problem, a method of target detection and recognition based on Faster R-CNN is proposed. By training the convolutional feature map for the manually marked image data, the detection and recognition model of switch, indicator and digital instrument in this scenario is obtained. Experiments show that the Faster R-CNN algorithm can detect the faults of the three kinds of equipment with different shooting angles, occlusion, and different illumination conditions, and can achieve ideal results and basically achieve the efficiency of real-time monitoring.
文章编号:     中图分类号:    文献标志码:
基金项目:水体污染控制与治理科技重大专项(2018ZX07601-001);沈阳市高层次人才创新创业资助项目(2017CXCY-C-06)
引用文本:
高露,马元婧.基于Faster R-CNN的设备故障检测与识别.计算机系统应用,2019,28(4):170-175
GAO Lu,MA Yuan-Jing.Equipment Fault Detection and Recognition Based on Faster R-CNN.COMPUTER SYSTEMS APPLICATIONS,2019,28(4):170-175