本文已被:浏览 1769次 下载 3017次
Received:October 23, 2018 Revised:November 12, 2018
Received:October 23, 2018 Revised:November 12, 2018
中文摘要: 面对城市出租车高空载率和乘客打车难问题,本文针对出租车司机端和乘客端分别进行载客热点和打车热点的分析研究,提出了一种基于DBSCAN算法的数据处理模型.利用这个模型对北京市182辆出租车的GPS轨迹数据进行处理,提高了数据精度;对于不同的受众,采用K-means算法对数据进行聚类分析,得到相关热点.实验表明,划分目标用户进行各热点的推荐不仅可以有效地为出租车司机提供高概率的载客热点,乘客打车难问题也有了一种可行的解决方法.
Abstract:Faced with the problem of high no-load rate of urban taxi and taxi difficulty of passengers, this study analyzes the passenger hotspots for taxi drivers and taxi hotspots for passengers, and proposes a data processing model based on DBSCAN algorithm. Using this model, the GPS trajectory data of 182 taxis in Beijing are processed, and the data precision is improved. For different audiences, K-means algorithm is used to cluster the data and get the relevant hotspots. Experiments show that the proposed method can not only effectively provide taxi drivers with high probability of passenger hotspots, but also provide a feasible solution to the problem of taxi difficulty of passengers.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
陈丽璐,聂文惠.基于出租车数据的载客热点与打车热点研究.计算机系统应用,2019,28(4):32-38
CHEN Li-Lu,NIE Wen-Hui.Research on Passenger Hotspots and Taxi Hotspots Based on Taxi Data.COMPUTER SYSTEMS APPLICATIONS,2019,28(4):32-38
陈丽璐,聂文惠.基于出租车数据的载客热点与打车热点研究.计算机系统应用,2019,28(4):32-38
CHEN Li-Lu,NIE Wen-Hui.Research on Passenger Hotspots and Taxi Hotspots Based on Taxi Data.COMPUTER SYSTEMS APPLICATIONS,2019,28(4):32-38