本文已被:浏览 1432次 下载 2023次
Received:August 28, 2018 Revised:September 20, 2018
Received:August 28, 2018 Revised:September 20, 2018
中文摘要: 针对现有的个性化隐私匿名技术不能很好地解决数值型敏感属性容易遭受近邻泄漏的问题,提出了一种基于聚类技术的匿名模型——(εi,k)-匿名模型.该模型首先基于聚类技术将按升序排列的敏感属性值划分到几个值域区间内;然后,提出了针对数值型敏感属性抵抗近邻泄漏的(εi,k)-匿名原则;最后,提出了一种最大桶优先算法来实现(εi,k)-匿名原则.实验结果表明,与已有的面向数值型敏感属性抗近邻泄漏方案相比,该匿名方案信息损失降低,算法执行效率提高,可以有效地降低用户隐私泄露风险.
中文关键词: 隐私保护 数值型敏感属性 近邻泄露 (εi, k)-匿名模型
Abstract:As for that existing personalized privacy anonymous technology can not solve the problem that the numerical sensitive attribute is vulnerable to the proximity breach, an anonymous model called (εi, k)-anonymity model is proposed and the model is based on clustering technology. Firstly, the model divides the sensitive attribute values in ascending order into several sub-intervals based on the clustering method; then, it proposes an (εi, k)-anonymity principle for numerically sensitive attributes against proximity breach; finally, a maximum bucket-first algorithm is proposed to implement the (εi, k)-anonymity principle. The experimental results show that compared with the existing scheme used for resisting proximity breach, the information loss of the proposed anonymous scheme is reduced, the algorithm execution efficiency is improved and it can reduce the leakage risk of user privacy effectively.
keywords: privacypreserving numerical sensitive attributes proximity privacy (εi, k)-anonymity model
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61572311,61602295)
引用文本:
王涛,温蜜.面向数值型敏感属性的隐私保护方案.计算机系统应用,2019,28(7):184-190
WANG Tao,WEN Mi.Privacy Protectionscheme Scheme for Numerical Sensitive Attributes.COMPUTER SYSTEMS APPLICATIONS,2019,28(7):184-190
王涛,温蜜.面向数值型敏感属性的隐私保护方案.计算机系统应用,2019,28(7):184-190
WANG Tao,WEN Mi.Privacy Protectionscheme Scheme for Numerical Sensitive Attributes.COMPUTER SYSTEMS APPLICATIONS,2019,28(7):184-190