本文已被:浏览 1653次 下载 2151次
Received:August 26, 2018 Revised:September 20, 2018
Received:August 26, 2018 Revised:September 20, 2018
中文摘要: 针对现有高密度校验码量化译码性能问题,本文提出了一种基于深度学习的量化最小和译码算法-QMSND.借助深度神经网络,通过对神经最小和译码信道输入向量和每轮迭代过程中节点更新信息进行非均匀间隔量化,动态调整Tanner图边的权重参数,改善消息传播效能.计算机仿真实验结果表明,本文提出的方法在对BCH码进行译码时仅需要8比特表示信息即可接近未经量化的浮点译码性能.因此,所提出的QMSND译码方法便于硬件实现,具有一定的实用性.
Abstract:Aiming at the problem of quantitative decoding performance of high-density parity-check codes, this study proposes a quantitative min-sum decoding approach based on deep learning, referenced as QMSND. In order to improve the decoding performance and efficiency, the proposed decoder can adjust the weight parameters of a Tanner graph dynamically, and quantize the input vector and the message of nodes at every iteration in nonuniform fashion via deep neural network. Computer simulation results show that the performance of proposed QMSND decoding with 8-bits presentation is very close to that of the float neural min-sum decoding without quantization. Therefore, the proposed decoding approach is easy to implement by hardware and has some practicability.
keywords: deep learning channel decoding AWGN BCH codes
文章编号: 中图分类号: 文献标志码:
基金项目:陕西省重点研发计划项目(2018GY-023);西安工业大学校长基金(XAGDXJJ16016)
引用文本:
郭军军,白硕栋,王乐.基于深度学习的实用HDPC码译码方法研究.计算机系统应用,2019,28(4):247-251
GUO Jun-Jun,BAI Shuo-Dong,WANG Le.Research on Practical Method for Decoding to HDPC Codes via Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2019,28(4):247-251
郭军军,白硕栋,王乐.基于深度学习的实用HDPC码译码方法研究.计算机系统应用,2019,28(4):247-251
GUO Jun-Jun,BAI Shuo-Dong,WANG Le.Research on Practical Method for Decoding to HDPC Codes via Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2019,28(4):247-251