本文已被:浏览 1763次 下载 2831次
Received:July 27, 2018 Revised:August 21, 2018
Received:July 27, 2018 Revised:August 21, 2018
中文摘要: 为了降低由于不良换道行为所造成的事故发生几率,需要在车辆实际驾驶过程中识别出其换道行为.本文借助IOS智能设备采集数据,建立相应的特征向量,提出基于支持向量机的车辆换道行为识别模型,其中针对连续换道行为的识别进一步提出一种改进的N-δ滑动窗口截取算法,用于对包含多个行为的数据进行快速划分,最后利用样本数据验证了N-δ滑动窗口截取算法的可行性和分类器的有效性.
中文关键词: N-δ滑动窗口截取算法 支持向量机 车辆换道行为识别 特征提取
Abstract:In order to reduce the probability of accidents caused by bad lane changing behavior, it is necessary to identify the lane changing behavior during the actual driving of the vehicle. In this paper, the IOS intelligent device is used to collect data, and the corresponding feature vector is established. The vehicle lane change behavior recognition model based on support vector machine is proposed. An improved N-δ sliding window interception algorithm is proposed for the recognition of continuous lane change behavior so as to divide the data containing multiple behaviors quickly, the sample data is used to verify the feasibility of the N-δ sliding window interception algorithm and the validity of the classifier.
keywords: N-δ sliding window interception algorithm Support Vector Machine (SVM) vehicle lane change behavior recognition feature extraction
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61703053)
引用文本:
李欢,程寒寒,王吉武,安毅生.改进的滑动窗口算法与SVM在换道行为识别中的应用.计算机系统应用,2019,28(1):113-118
LI Huan,CHENG Han-Han,WANG Ji-Wu,AN Yi-Sheng.Application of Improved Sliding Window Algorithm and SVM in Vehicle Lane Change Behavior Recognition.COMPUTER SYSTEMS APPLICATIONS,2019,28(1):113-118
李欢,程寒寒,王吉武,安毅生.改进的滑动窗口算法与SVM在换道行为识别中的应用.计算机系统应用,2019,28(1):113-118
LI Huan,CHENG Han-Han,WANG Ji-Wu,AN Yi-Sheng.Application of Improved Sliding Window Algorithm and SVM in Vehicle Lane Change Behavior Recognition.COMPUTER SYSTEMS APPLICATIONS,2019,28(1):113-118