本文已被:浏览 2439次 下载 4364次
Received:March 13, 2018 Revised:March 20, 2018
Received:March 13, 2018 Revised:March 20, 2018
中文摘要: 针对在数据挖掘过程中存在的维度灾难和特征冗余问题,本文在传统特征选择方法的基础上结合强化学习中Q学习方法,提出基于强化学习的特征选择算法,智能体Agent通过训练学习后自主决策得到特征子集.实验结果表明,本文提出的算法能有效的减少特征数量并有较高的分类性能.
Abstract:For the dimensional disaster and feature redundancy problems in the process of data mining, a reinforcement learning based feature selection algorithm, which is combined Q learning methods with traditional feature selection methods, is proposed in this study. In the proposed method, the agent acquires a subset of characteristics autonomously through training and learning. Experimental results show that the proposed algorithm can effectively reduce the number of features and has higher classification performance.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
朱振国,赵凯旋,刘民康.基于强化学习的特征选择算法.计算机系统应用,2018,27(10):214-218
ZHU Zhen-Guo,ZHAO Kai-Xuan,LIU Min-Kang.Feature Selection Algorithm Based on Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2018,27(10):214-218
朱振国,赵凯旋,刘民康.基于强化学习的特征选择算法.计算机系统应用,2018,27(10):214-218
ZHU Zhen-Guo,ZHAO Kai-Xuan,LIU Min-Kang.Feature Selection Algorithm Based on Reinforcement Learning.COMPUTER SYSTEMS APPLICATIONS,2018,27(10):214-218