###
计算机系统应用英文版:2018,27(7):236-242
本文二维码信息
码上扫一扫!
基于语义向量与OCSVM的工控网络异常行为识别
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.国家电网公司 东北分部, 沈阳 110180)
Identification of Abnormal Behavior in Industrial Network Based on Semantic Vector and OCSVM
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Northeast Branch Corporation, State Grid Corporation of China, Shenyang 110180, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1796次   下载 2344
Received:November 21, 2017    Revised:December 15, 2017
中文摘要: 为克服基于漏洞库等传统安全防护策略的短板,实现对未知攻击行为的识别和预警.使用时间窗划分和深度包检测技术,将端到端的通信内容转化为控制行为序列.根据工控协议的语义特性,采用语义向量模型将行为序列转化为统一维度的特征向量.基于单类支持向量机(OCSVM)仅使用正常行为样本构造的异常识别模型,克服了无法从生产环境中获得异常样本的困难.对于所仿真出的多种异常行为序列,模型识别的平均准确率能够达到93%以上.
Abstract:In order to overcome the shortcomings of the traditional security protection strategy based on the vulnerability database, the recognition and early warning of unknown attack behavior should be realized. Using time window division and deep packet inspection, the content of end-to-end communication is transformed into a sequence of control actions. According to the control protocol's semantic features, the control behavior sequences are transformed into the feature vectors of unified dimension using the semantic vector model. The anomaly recognition model based on One Class Support Vector Machine (OCSVM) is constructed by normal behavior samples only, overcoming the difficulty of obtaining exception samples from the production environment. The average recognition accuracy of the model is to more than 93% on the simulation sequences containing multiple abnormal behaviors.
文章编号:     中图分类号:    文献标志码:
基金项目:国家科技重大专项(2017ZX01030-201)
引用文本:
王佳楠,李泽宇,李喜旺.基于语义向量与OCSVM的工控网络异常行为识别.计算机系统应用,2018,27(7):236-242
WANG Jia-Nan,LI Ze-Yu,LI Xi-Wang.Identification of Abnormal Behavior in Industrial Network Based on Semantic Vector and OCSVM.COMPUTER SYSTEMS APPLICATIONS,2018,27(7):236-242